LORENE
vector_etamu.C
1 /*
2  * Methods of class Vector related to eta and mu
3  *
4  * (see file vector.h for documentation)
5  *
6  */
7 
8 /*
9  * Copyright (c) 2005 Eric Gourgoulhon & Jerome Novak
10  *
11  * This file is part of LORENE.
12  *
13  * LORENE is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2 of the License, or
16  * (at your option) any later version.
17  *
18  * LORENE is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21  * GNU General Public License for more details.
22  *
23  * You should have received a copy of the GNU General Public License
24  * along with LORENE; if not, write to the Free Software
25  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
26  *
27  */
28 
29 
30 char vector_etamu_C[] = "$Header: /cvsroot/Lorene/C++/Source/Tensor/vector_etamu.C,v 1.4 2014/10/13 08:53:45 j_novak Exp $" ;
31 
32 /*
33  * $Id: vector_etamu.C,v 1.4 2014/10/13 08:53:45 j_novak Exp $
34  * $Log: vector_etamu.C,v $
35  * Revision 1.4 2014/10/13 08:53:45 j_novak
36  * Lorene classes and functions now belong to the namespace Lorene.
37  *
38  * Revision 1.3 2014/10/06 15:13:21 j_novak
39  * Modified #include directives to use c++ syntax.
40  *
41  * Revision 1.2 2008/08/27 08:52:23 jl_cornou
42  * Added fonctions for angular potential A
43  *
44  * Revision 1.1 2005/02/14 13:01:50 j_novak
45  * p_eta and p_mu are members of the class Vector. Most of associated functions
46  * have been moved from the class Vector_divfree to the class Vector.
47  *
48  *
49  * $Header: /cvsroot/Lorene/C++/Source/Tensor/vector_etamu.C,v 1.4 2014/10/13 08:53:45 j_novak Exp $
50  *
51  */
52 
53 // Headers C
54 #include <cstdlib>
55 #include <cassert>
56 
57 // Headers Lorene
58 #include "tensor.h"
59 
60  //--------------//
61  // eta //
62  //--------------//
63 
64 
65 namespace Lorene {
66 const Scalar& Vector::eta() const {
67 
68 
69  if (p_eta == 0x0) { // a new computation is necessary
70 
71  // All this has a meaning only for spherical components:
72 #ifndef NDEBUG
73  const Base_vect_spher* bvs = dynamic_cast<const Base_vect_spher*>(triad) ;
74  assert(bvs != 0x0) ;
75 #endif
76 
77  // eta is computed from its definition:
78  Scalar sou_eta = *cmp[1] ; //V^th
79  sou_eta.div_tant() ;
80  sou_eta += cmp[1]->dsdt() + cmp[2]->stdsdp();
81 
82  // Resolution of the angular Poisson equation for eta
83  // --------------------------------------------------
84  p_eta = new Scalar( sou_eta.poisson_angu() ) ;
85 
86  }
87 
88  return *p_eta ;
89 
90 }
91 
92 
93  //--------------//
94  // mu //
95  //--------------//
96 
97 
98 const Scalar& Vector::mu() const {
99 
100 
101  if (p_mu == 0x0) { // a new computation is necessary
102 
103  // All this has a meaning only for spherical components:
104 #ifndef NDEBUG
105  const Base_vect_spher* bvs = dynamic_cast<const Base_vect_spher*>(triad) ;
106  assert(bvs != 0x0) ;
107 #endif
108 
109  Scalar tmp = *cmp[2] ; // V^ph
110  tmp.div_tant() ; // V^ph / tan(th)
111 
112  // dV^ph/dth + V^ph/tan(th) - 1/sin(th) dV^th/dphi
113  tmp += cmp[2]->dsdt() - cmp[1]->stdsdp() ;
114 
115  // Resolution of the angular Poisson equation for mu
116  // --------------------------------------------------
117  p_mu = new Scalar( tmp.poisson_angu() ) ;
118 
119  }
120 
121  return *p_mu ;
122 
123 }
124 
125  //-----------//
126  // A //
127  //-----------//
128 
129 const Scalar& Vector::A() const {
130 
131 
132  if (p_A == 0x0) { // A new computation is necessary
133 
134  // All this has a meaning only for spherical components :
135 #ifndef NDEBUG
136  const Base_vect_spher* bvs = dynamic_cast<const Base_vect_spher*>(triad) ;
137  assert(bvs != 0x0) ;
138 #endif
139 
140  // p_eta doit ĂȘtre calculĂ©
141  if (p_eta == 0x0) { Scalar etatmp = this->eta(); }
142 
143  Scalar tmp = -*cmp[0] ; // -V^r
144  tmp.div_r_dzpuis(2); // -V^r/r
145 
146  Scalar eta_tilde = *p_eta ;
147  Scalar etad = eta_tilde.dsdr() ;
148  eta_tilde.div_r_dzpuis(2);
149  etad.set_dzpuis(2);
150  tmp += etad + eta_tilde ; // d eta / dr + eta/r
151 
152  p_A = new Scalar (tmp) ;
153  }
154 
155  return *p_A ;
156 }
157 
158 
159 
160 
161 
162  //----------------//
163  // update_vtvp //
164  //----------------//
165 
166 
168 
169  assert( (p_eta != 0x0) && (p_mu != 0x0) ) ;
170 
171  // V^theta :
172  *cmp[1] = p_eta->dsdt() - p_mu->stdsdp() ;
173 
174  // V^phi :
175  *cmp[2] = p_eta->stdsdp() + p_mu->dsdt() ;
176 
177  Scalar* p_eta_tmp = p_eta ; //## in order not to delete p_eta and p_mu
178  p_eta = 0x0 ;
179  Scalar* p_mu_tmp = p_mu ;
180  p_mu = 0x0 ;
182 
183  p_eta = p_eta_tmp ;
184  p_mu = p_mu_tmp ;
185 
186 }
187 
188 
189 void Vector::set_vr_eta_mu(const Scalar& vr_i, const Scalar& eta_i,
190  const Scalar& mu_i) {
191 
192  // All this has a meaning only for spherical components:
193  assert( dynamic_cast<const Base_vect_spher*>(triad) != 0x0 ) ;
194  assert(&vr_i.get_mp() == &eta_i.get_mp()) ;
195 
196  del_deriv() ;
197 
198  // V^r
199  *cmp[0] = vr_i ;
200 
201  p_eta = new Scalar( eta_i ) ; // eta
202 
203  p_mu = new Scalar( mu_i ) ; // mu
204 
205  update_vtvp() ;
206 
207  return ;
208 }
209 
210 
211 
212 
213 
214 }
Lorene prototypes.
Definition: app_hor.h:64
const Scalar & dsdt() const
Returns of *this .
Definition: scalar_deriv.C:208
Tensor field of valence 0 (or component of a tensorial field).
Definition: scalar.h:387
Scalar * p_A
Field defined by Insensitive to the longitudinal part of the vector, related to the curl...
Definition: vector.h:241
const Base_vect * triad
Vectorial basis (triad) with respect to which the tensor components are defined.
Definition: tensor.h:303
void update_vtvp()
Computes the components and from the potential and , according to: .
Definition: vector_etamu.C:167
Scalar poisson_angu(double lambda=0) const
Solves the (generalized) angular Poisson equation with *this as source.
Definition: scalar_pde.C:200
void set_dzpuis(int)
Modifies the dzpuis flag.
Definition: scalar.C:808
virtual const Scalar & eta() const
Gives the field such that the angular components of the vector are written: .
Definition: vector_etamu.C:66
virtual void del_deriv() const
Deletes the derived quantities.
Definition: vector.C:219
void set_vr_eta_mu(const Scalar &vr_i, const Scalar &eta_i, const Scalar &mu_i)
Defines the components through potentials and (see members p_eta and p_mu ), as well as the compon...
Definition: vector_etamu.C:189
Scalar ** cmp
Array of size n_comp of pointers onto the components.
Definition: tensor.h:315
const Scalar & stdsdp() const
Returns of *this .
Definition: scalar_deriv.C:238
Scalar * p_mu
Field such that the angular components of the vector are written: .
Definition: vector.h:233
virtual const Scalar & A() const
Gives the field defined by Related to the curl, A is insensitive to the longitudinal part of the ve...
Definition: vector_etamu.C:129
Spherical orthonormal vectorial bases (triads).
Definition: base_vect.h:308
const Scalar & dsdr() const
Returns of *this .
Definition: scalar_deriv.C:113
virtual const Scalar & mu() const
Gives the field such that the angular components of the vector are written: .
Definition: vector_etamu.C:98
Scalar * p_eta
Field such that the angular components of the vector are written: .
Definition: vector.h:219
void div_r_dzpuis(int ced_mult_r)
Division by r everywhere but with the output flag dzpuis set to ced_mult_r .
const Map & get_mp() const
Returns the mapping.
Definition: tensor.h:861
void div_tant()
Division by .