Package pal.statistics
Class DiscreteStatistics
- java.lang.Object
-
- pal.statistics.DiscreteStatistics
-
public class DiscreteStatistics extends java.lang.Object
simple discrete statistics (mean, variance, cumulative probability, quantiles etc.)- Version:
- $Id: DiscreteStatistics.java,v 1.5 2001/07/13 14:39:13 korbinian Exp $
- Author:
- Korbinian Strimmer
-
-
Constructor Summary
Constructors Constructor Description DiscreteStatistics()
-
Method Summary
All Methods Static Methods Concrete Methods Modifier and Type Method Description static double
cdf(double z, double[] x)
compute the cumulative probability Pr(x <= z) for a given z and a distribution of xstatic double
cdf(double z, double[] x, int[] indices)
compute the cumulative probability Pr(x <= z) for a given z and a distribution of xstatic double
mean(double[] x)
compute meanstatic double
quantile(double q, double[] x)
compute the q-th quantile for a distribution of x (= inverse cdf)static double
quantile(double q, double[] x, int[] indices)
compute the q-th quantile for a distribution of x (= inverse cdf)static double
skewness(double[] x)
compute fisher skewnessstatic double
stdev(double[] x)
compute standard deviationstatic double
variance(double[] x)
compute variance (ML estimator)static double
variance(double[] x, double mean)
compute variance (ML estimator)static double
varianceSampleMean(double[] x)
compute variance of sample mean (ML estimator)static double
varianceSampleMean(double[] x, double mean)
compute variance of sample mean (ML estimator)
-
-
-
Method Detail
-
mean
public static double mean(double[] x)
compute mean- Parameters:
x
- list of numbers- Returns:
- mean
-
variance
public static double variance(double[] x, double mean)
compute variance (ML estimator)- Parameters:
x
- list of numbersmean
- assumed mean of x- Returns:
- variance of x (ML estimator)
-
skewness
public static double skewness(double[] x)
compute fisher skewness- Parameters:
x
- list of numbers- Returns:
- skewness of x
-
stdev
public static double stdev(double[] x)
compute standard deviation- Parameters:
x
- list of numbers- Returns:
- standard deviation of x
-
variance
public static double variance(double[] x)
compute variance (ML estimator)- Parameters:
x
- list of numbers- Returns:
- variance of x (ML estimator)
-
varianceSampleMean
public static double varianceSampleMean(double[] x, double mean)
compute variance of sample mean (ML estimator)- Parameters:
x
- list of numbersmean
- assumed mean of x- Returns:
- variance of x (ML estimator)
-
varianceSampleMean
public static double varianceSampleMean(double[] x)
compute variance of sample mean (ML estimator)- Parameters:
x
- list of numbers- Returns:
- variance of x (ML estimator)
-
quantile
public static double quantile(double q, double[] x, int[] indices)
compute the q-th quantile for a distribution of x (= inverse cdf)- Parameters:
q
- quantile (0 < q <= 1)x
- discrete distribution (an unordered list of numbers)indices
- index sorting x- Returns:
- q-th quantile
-
quantile
public static double quantile(double q, double[] x)
compute the q-th quantile for a distribution of x (= inverse cdf)- Parameters:
q
- quantile (0 <= q <= 1)x
- discrete distribution (an unordered list of numbers)- Returns:
- q-th quantile
-
cdf
public static double cdf(double z, double[] x, int[] indices)
compute the cumulative probability Pr(x <= z) for a given z and a distribution of x- Parameters:
z
- threshold valuex
- discrete distribution (an unordered list of numbers)indices
- index sorting x- Returns:
- cumulative probability
-
cdf
public static double cdf(double z, double[] x)
compute the cumulative probability Pr(x <= z) for a given z and a distribution of x- Parameters:
z
- threshold valuex
- discrete distribution (an unordered list of numbers)- Returns:
- cumulative probability
-
-