
MANUAL FOR REFLECTION

KLAUS THIEL

Abstract. Reflection is a simplification procedure for quantifier free formu-

lae over a semi-ring with 0 and 1 and decidable equality. Given the goal G
reflection produces a new formula G′ and a proof of G′ → G which is then

applied to G thus one is left with the new goal G′ which should be easier to

prove.
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1. Introduction

Let us consider the proof of ∀x, y, z ∈ Z(x+ y + z = z + y +x). In order to show
this statement by hand from the semi-ring-axioms one needs six steps:

(sg "int1+int2+int3=int3+int2+int1")

(strip)

(simp "IntPlusCom")

(simp-with "IntPlusComm" (pt "int1") (pt "int2"))

(simp "IntPlusAssoc")

; ? 5: T

(use "Truth-Axiom")

; Proof finished.

The amount of steps increases quickly if one deals with more complex goals. The
proof search is not always able to find a proof:

(sg "int1+int2+int3=int3+int2+int1")

(search) ; no proof found

(strip)

(prop) ; Not provable ...

With the reflection procedure one needs only three steps whatever the goal might
be — provided it is provable from the semi-ring axioms.

(sg "int1+int2+int3=int3+int2+int1")

(strip)
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(reflection "int")

; ? 3: int1+int2+int3=int1+int2+int3

(use "Truth-Axiom")

; Proof finished.

2. How To Use It

(reflection) is defined in the file reflection.scm. This file depends on
nat.scm, list.scm and reflection thms.scm.

(reflection) can only be applied to a quantifier free goal over some semi-ring.
But before doing so, we need to prepare the reflection procedure for which we use
the function

(prepare-reflection

Ring

Null Unum

RingAdd RingTimes

RingAddAssoc RingAddNeutral RingAddComm

RingTimesAssoc RingTimesNeutral RingTimesComm

Distr)

This will generate the proofs and theorems used for the simplification and its
proof. The twelve expected arguments have to be strings with the following mean-
ing:

Ring name of semi-ring
Null name of neutral element for RingAdd
Unum name of neutral element for RingTimes
RingAdd name of addition
RingTimes name of multiplication
RingAddAssoc, RingAddNeutral, RingAddComm

RingTimesAssoc, RingTimesNeutral, RingTimesComm, Distr

name of theorem or global assumption

In order to invoke the reflection procedure one uses the command (reflection Ring)

where Ring is a string naming the semi-ring to which reflection is applied to.

Example.

(exload "ordinals/reflection.scm")

(libload "numbers.scm")

(aga "IntPlusAssoc" (pf "all i,j,j2.i+(j+j2) = (i+j)+j2"))

(aga "IntPlusNeutral" (pf "all i.IntZero+i = i"))

(aga "IntPlusComm" (pf "all i,j.i+j = j+i"))

(aga "IntTimesAssoc" (pf "all i,j,j2.i*(j*j2) = (i*j)*j2"))

(aga "IntTimesNeutral" (pf "all i. (IntPos One)*i = i"))

(aga "IntTimesComm" (pf "all i,j.i*j = j*i"))

(aga "IntDistr" (pf "all i,j,j2.i*(j+j2) = (i*j)+(i*j2)"))

(prepare-reflection "int" "IntZero" "IntPos One"

"IntPlus" "IntTimes"

"IntPlusAssoc" "IntPlusNeutral" "IntPlusComm"

"IntTimesAssoc" "IntTimesNeutral" "IntTimesComm"

"IntDistr")

(sg "i+2+j+2+i*j2+j+j = i*(1+j2)+j*2+4+j")

(strip)
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(reflection "int")

; ? 3: 4+i+3*j+i*j2=4+i+3*j+i*j2
(use-with "Truth-Axiom")

; Proof finished

3. How Does It Work ?

Let us assume that we have a goal G over a semi-ring R. The reflection method
simplifies the goal to G′, builds a proof of G′ → G and applies that proof to G thus
we are left with the new goal G′.

Which Goals Can Reflection Be Applied To ? The goal must be an atomic
formula consisting of a binary boolean valued function applied to two arguments.
The general pattern is f(t1, t2) where f is of type R => R => boole and t1 and t2
are terms of type of R. Moreover R must be discrete, e.g. a finitary algebra with
boolean valued equality =.

How Does Reflection Simplify The Goal ? The simplification from G to G′

is not done within R but on the meta-level. That is why this method is called
reflection. (prepare-reflection) introduces an expression algebra named “ring-
expr”, where ring is replaced by the semi-ring’s name. The algebra has the following
constructors:

ringVar :nat=>ringexpr

ringConst:ring=>ringexpr

ringAdd :ringexpr=>ringexpr=>ringexpr

ringMult :ringexpr=>ringexpr=>ringexpr

If one applies (reflection) to some goal f(t1, t2), then the terms t1 and t2
are reflected into that algebra. The mapping of semi-ring-terms into the expres-
sion algebra is done by the functions (term-to-linarith-expr-and-env ) and
(terms-to-list-term ). For example if t1 is a variable (term in var-form), then
it will be assigned the expression ringVar Zero.

In order to reobtain the corresponding semi-ring-term from an expression, one
needs to know which number has been assigned to which variable. Therefore while
reflecting t1 and t2 into the expression algebra a list of semi-ring-variables called
“environment” is produced. The ith variable in the environment has been assigned
the expression ringVar i where i is a numeric term of the algebra nat.

Syntacticly different terms will be assigned to two different expressions which
are semantically different in the expression algebra, For example in the case of the
semi-ring int:
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Goal IntPos 2+IntPos 2 = IntPos 2*IntPos 2

lhs intAdd(intConst 2)(intConst 2)

rhs intMult(intConst 2)(intConst 2)

env (Nil int)

Goal i+2+j+2+i*j2+j+j=i*(1+j2)+j*2+4+j

lhs

intAdd

(intAdd

(intAdd

(intAdd(intAdd(intAdd(intVar Zero)(intConst 2))(intVar(Succ Zero)))

(intConst 2))

(intMult(intVar Zero)(intVar(Succ(Succ Zero)))))

(intVar(Succ Zero)))

(intVar(Succ Zero))

rhs

intAdd

(intAdd

(intAdd(intMult(intVar Zero)(intAdd(intConst 1)(intVar(Succ(Succ Zero)))))

(intMult(intVar(Succ Zero))(intConst 2)))

(intConst 4))

(intVar(Succ Zero))

env i::j::j2:

What Reflection Cannot Do. (reflection) is not a complete decision proce-
dure. It cannot be one because it is applied to quantifier free formulae with free
variables in the full language of Arithmetic, i.e. including addition and multiplica-
tion. For example (reflection) is not able to solve Fermat’s Last Theorem, not
even the instance n = 3. The goal k ∗ k ∗ k + m ∗m ∗m 6= n ∗ n ∗ n is not changed
by (reflection) does not normalise to false.


