The MINLOG Proof Checker: MPC

Martin Ruckert

November 25, 2020

Contents

1__Lexical Structure 2

2 nta 3
2.1 Commandsl e e 3
2.2 Declarationsl. 4
2.3 Assumptions and Claims|. 6
R4 Blockd 7
2.5 Syntax Declarations] 7

[B_Proofs 8
3.1 Simple Rules| o 8
B.2 Block Rulesl 9
3.3 Inductionl e 11
3.4 Proof by Cases| 11
[3.5 Intuitionistic and Classical Logic| 12

(A Library code] 13
[A.1 Natural Numbersl 13
[A.2 Polymorphic Lists| 15

1 Lexical Structure

The input of MPC is a stream of characters that usually comes from a regular text file (see
Invocation). Mpc will group these characters together to form whitespace, comments, punctu-
ation, strings, names, keywords, numbers, or indices. Keywords, punctuation, names, numbers
and indices are collectively called tokens.

Whitespace: You will know whitespace, when you see it. Otherwise, you may look up the
function isspace in a scheme revised five report. Whatever this function regards as whitespace,
is whitespace.

Whitespace is of no significance to MPC—except between a name and an index (see below).
Its only purpose is to separate two tokens and to make files more readable.

Comments: Comments are started with // and extend until the end of line or the end of file.
Like whitespace, comments separate tokens and can improve readability.

Numbers and Indices Numbers and Indices are both formed from the digits 0, 1, 2, 3, 4,
5,6, 7,8 and 9. They form an index, if they follow immediately after a name, or after an
underscore _, or after a caret ~. Otherwise, they form a number.

Punctuation The following characters are punctuation: {, }, [, 1, (), ., ;, ,, and ".

“n» “nn

Strings Strings start with a character and end with the following character or the
end of the input. Inside a string any character can be escaped by a preceding backslash “\”.
The preceding backslash strips a character of any special meaning and inserts it plainly into the
string. This is useful only for the characters that have any special meaning: the quote and the
backslash itself. That is, “\"” will insert a double-quote into the string without terminating it,
and “\\” will insert a single backslash into the string.

Names Names are formed either from letters only or from special characters only. All charac-
ters except whitespace, digits, letters, and punctuation are considered special characters. Names
can be indexed by a number. There must be no whitespace between name and index. E.g £15
is the function fi5 whereas £ 15 is the function f applied to the number 15.

« I _»

Examples of names are “hello”, “sigma”, “==>", and The following strings are not

names: “x_i”, “(;-)", or “id3tag”.

Note: All names of types, variables, functions, or predicates must be declared before they can
be used. Once an alphabetic name is declared, it provides an infinite sequence of objects (types,
variables, functions, predicates) using indexing.

Keywords Keywords are predefined names with a fixed, build in meaning. All the keywords
that MPC knows about are explained below.

2 Syntax

The syntax of MPC uses as main ingredients formulas and terms. Since MPC is a front-end
to the MINLOG system it uses the MINLOG syntax to specify formulas and terms. To find out
how to write formulas and terms you can either rely on your intuition or consult the MINLOG
manual. Here we describe only the syntax that is particular to MPpc.

Mpc is designed to process normal text files. Every text file starts with the keyword “MPC”

W,

followed by a semicolon “;”. Then a list of commands follows.

2.1 Commands

A command can be one of the following:

e LOAD " Filename" ;
reads in the given file as SCHEME code. Every possible effect can be obtained in this way
by writing appropriate SCHEME code.

If the file does not exist in the current directory, it is searched for in a directory of library
files.

e INCLUDE " Filename" ;
reads in the given file as MPC code. It can be used to store e.g. a collection of definitions
and axioms in a file and load them into several proofs.

If the file does not exist in the current directory, it is searched for in a directory of library
files. Currently two libraries exist: nat.mpc gives definitions of natural numbers, and
list.mpc gives definitions for lists.

e SCHEME "Scheme Expression";
reads the given string with the SCHEME function read and supplies the result as an
argument to the SCHEME function eval, in effect evaluating the given string like regular
SCHEME code. Note that inside a string doublequotes need to be escaped by a preceding
backslash. For example:

SCHEME "(display \"hello world!\")";.

e PROOF; starts a proof. This will set the list of known facts to an empty list. MpcC will
forget all previously proved formulas.

Two variations exist: CLASSIC PROOF starts a proof with the rule of Stability enabled—
that is you can conclude A from ——A.

INTUITIONISTIC PROOF starts a proof with the special rule of Ex-Falso-Quodlibet enabled
— that is you can conclude any A from L.

e END; terminates a proof (currently optional).
e A declaration,
e an assumption,

e a claim,

a block, or

e a syntax specification as detailed below.

2.2 Declarations

Declarations are used to tell MPC about types, variables, functions, and predicates.

Types: Types come as type variables, as simultaneously defined finite algebras, or as com-
posed types. Only variable types and algebra types need to be declared. Type operators (mostly
=>) can be freely used to construct composed types.

To declare a type variable the keyword “TYPE” is followed by a dot “.”, a list of names, and

finally a semicolon “;”. It will make the given names type variables. For example:

TYPE . rho sigma tau;
will make rho, sigma, and tau new type variables.

There is one predefined type variable alpha that exists, for internal reasons, right from the
start.

By adding an index to a variable name, an infinite number of different type variables can be
obtained, e.g. alphab, taul23, or sigmal.

Algebra types are described in the next section.

Algebra Types: Objects of a free algebra type are build by applying an appropriate con-
structor to already existing objects. For example, the free algebra of natural numbers can be
defined with the constructors zero and successor.

zero is a constructor of empty arity, that is, it is applied to no object and yields a natural
number, and successor is applied to a natural number and yields again a natural number.
Hence “successor zero” is for example a natural number.

To specify an algebra, the name of the algebra together with the name of the constructors and
their arity has to be given. The syntax is:

ALGEBRA algebra-name { { {

constructor-type . constructor-name ;
constructor-type . constructor-name ;
}s

For example to define the algebra of natural numbers, one can write

ALGEBRA nat {

nat . zero ;
nat => nat . successor ;

Algebras can have type parameters. For example a list type, might have the type of the list
elements as a parameter. To declare an algebra with type parameters, the number of type
parameters has to be given after the algebra name. In this case the type variables alphaO,
alphal, ...can be used in the constructor-types.

For example to define the free algebra of lists of elements of type alpha0O one can write:

ALGEBRA 1list 1 {
list . nil ;

alpha0 => list => list . comns ;

}

Finally, several algebras can be defined simultaneously by listing all their names after the
keyword ALGEBRA.

As a last example we construct an algebra of labeled trees, where labels can be either of type
alpha0, or of type alphal, or again labeled trees.

ALGEBRA tree label 2 {
alphaO => label . first ;
alphal => label . second ;
tree => label . third ;

tree . empty;
label => tree => tree => tree . node ;

}

Variables: Variables are declared by specifying their type. The syntax is:
type . wvariablenames ;

For example

nat =>nat . f g ;

defines £ and g as function variables mapping natural numbers to natural numbers. Similarly
£3 or g2 are such function variables.

Functions: Function constants have a name and a type (like function variables) but in ad-
dition have fixed computational rules or rewrite rules attached to them. These rules are used
automatically by the prover to find out whether two terms are equal.

A function declaration starts with the keyword FUNCTION followed by the target type of the
function, a dot, the name of the function and a list of argument types. After the name follows
a list of rules enclosed in braces. A semicolon terminates the function declaration. As a special
convenience, syntax declarations (see below) can be used inside the rule list.

A rule has the form term -> term ; It states that the left term can be replaced by the right
term. Of course, the principal operator of the left term has to be the function currently being
defined. Furthermore each rule must have a unique left hand side. More rules can be added if
prefixed with the keyword REWRITE. These additional rules are applied more carefully (avoiding
rewrite loops) and hence are more flexible but slower.

The following example illustrates this:

SYNTAX ++ PREFIXOP successor ;
FUNCTION nat . plus (nat nat)
{

SYNTAX + ADDOP plus ;

n + zero -> n ;

n+ ++m -> ++(n + m)
REWRITE zero + n -> n;
REWRITE ++n + m -> ++(n + m) ;

b

REWRITE n + (m+ k) > (n + m) + k ;
};

Note, that syntax declarations, explained below, are allowed inside a function declaration to
enable the use of a more convenient syntax, e.g. infix notation, if so desired.

Functions, by default, are total functions. It is possible to define partial functions by adding
the keyword PARTIAL in front of the keyword FUNCTION.

Predicates: To declare a predicate the keyword PRED is used followed by a list of types of the
arguments (if any), a dot, a list of predicate names, and finally a semicolon.

For example:
PRED . A B ;

defines two predicate variables A and B (as well as A0, A1, ...). They take no arguments and
can be used like propositional variables.

PRED nat nat . R ;
defines a binary predicate over natural numbers (a relation), and

PRED nat=>nat . P ; defines a unary predicate over functions of natural numbers.

2.3 Assumptions and Claims

An assumption is a formula followed by a dot “.” and a claim is a formula followed by a
semicolon “;”. In the first case the formula is added to the list of known formulas, in the
second case an attempt is made to prove the formula form the formulas already known to be

true.

Formulas are defined inductively: Every predicate variable A is a formula. If M and N are
formulas then M & N (conjunction) and M -> N (implication) are formulas. If M is a formula
and x is a variable, then all x M and ex x M are formulas.

Examples of formulas and details of how proofs work can be found below.
For example:

PRED . A ; // A is a proposition
A. // we assume A holds
A & A; // we claim that A & A can be proven

2.4 Blocks

Blocks are used to construct conditional proofs.

They start with { and end with }. After the opening brace follows either a formula or a variable
followed by a dot. This is the local formula or variable of this block.

Next a block contains a non empty sequence of claims or other blocks.

When the block is closed it proves an implication — in case of a local formula — or an all
quantified formula — in case of a local variable. The exact usage is explained below. Here an
example may suffice:

PRED alpha . P ; // P is a predicate
alpha . x ; // x is a variable of type alpha
{ x0 . // assume x0 is given
{ P x0 . // assume further that P of x0 holds
P x0 ; // then P of x0 holds
} // this proves P x0 -> P x0
} // this proves all x0 . P x0 -> P x0

2.5 Syntax Declarations

In mathematics, functions are often written in infix, prefix, or postfix notation. Instead of
writing plus x y — the function plus applied to x and y — we like to write x + y. To
facilitate this MPC has syntax declarations.

A syntax declaration starts with the keyword SYNTAX followed by the name of the new operator,
followed by the tokentype, followed by a term, and a semicolon.

A tokentype is one of the following (in order of increasing binding strength): PAIROP, IMPOP,
OROP, ANDOP, RELOP, ADDOP, MULOP, PREFIXOP, POSTFIXOP, or CONST. A PAIROP and IMPOP are
right associative, a RELOP is not associative, and all other infix operators are left associative.

After the syntax declaration, any term containing the new operator as main connective is
replaced by the term given in the syntax declaration applied to the arguments of the operator.

For example:

boole . a b; // a and b are booleans.
boole=>boole=>boole . f ; // f is a function.
SYNTAX | ADDOP fO ; // we write | as infix operator for fO.

all a . truela . // for all a ((f0O true) a) holds.
all a,b . alb -> bla. // f0 is commutative.
falsel|false -> bot. // ((£f0 false) false) implies bot.

Syntax declarations might be parameterized with type variables alpha0O, alphal, ...If the
defining term contains one of these type variables, the types of the actual arguments are matched
against the type of the operator to instantiate the type variables. If the types match, the syntax
declaration is used.

Further, the same operator might be redefined in several syntax declarations as long as all of
these declarations use the same tokentype. Multiple declarations are tested in the order declared
and the first matching declaration is used.

Note: Syntax declarations are allowed inside a function declaration.

3 Proofs

The MINLOG Proof Checker is able to check proofs in “natural deduction” style.

It maintains a list of formulas, called the context, which are assumed or known or proven to be
true. Initially this list is empty; using the keyword PROOF; it can be reset to an empty list at
any time to start a new proof.

There are only two methods to add a formula to the context: First, one can assume the formula
by just stating it and putting a dot behind it. This is called an assumption. Example:

PRED . A B; // A and B are propositional variables
A. // Let’s assume A holds
A -> B. // Let’s assume A implies B

Second, one can prove a formula from other formulas already known — i.e. fformulas already
part of the context — using the rules of natural deduction. The claim that a formula can be
proved is expressed by stating the formula followed by semicolon. This is called a claim. MpcC
then will check whether there are indeed formulas in the context, which prove the new formula
using exactly one rule of natural deduction.

If that is not possible, MPC will start a limited proof search trying to obtain a more complicated
proof of the claimed formula. If a proof is found this is indicated in an appropriate warning
message. It tells the user that the formula is indeed provable, but not with a single step.

If the proof search does not discover a proof, MPC will simply assume the formula and continue.
It will output a corresponding error message, and it should be clear that the proof has still a
gap at this point.

Whenever a formula is added to the context, it receives a unique number and MPC will use this
number later to refer to this formula in its output.

A typical proof will first define the necessary types, variables, functions and predicates to
establish the language of the theory, then it states a list of assumptions made (these are the
axioms of the theory) and finally it starts to make claims, adding one formula at a time to the
pool of knowledge (the context) available for the theory. In the end it will conclude with the
final formula, a theorem of the theory.

Often the language of the theory and its axioms are put into include files, to be able to conve-
niently load them before starting a proof.

In the following sections, we will discuss all the proof rules of natural deduction, one at a time.

3.1 Simple Rules

To be applicable, these rules just require certain formulas to be already in the context.

Trivial Proofs If a formula, after normalization, is the same as a formula in the context, it
is proven by identity. Likewise, if a formula, by normalization, reduces to True, it is proven.

And Elimination: If a formula of the form A A B is in the context, it is possible to derive
either A or B in one step. Example:

A & B. // O assumed.
A; // 0K, 1 proved by and-elim-left from O
B; // OK, 2 proved by and-elim-right from O

And Introduction: If two formulas A and B are part of the context, it is possible to derive
A A B in one step. Example:

A. // O assumed.
B. // 1 assumed.
A & B; // 0K, 2 proved by and-intro from O and 1

Implication Elimination: If an implication A — B and its condition A are part of the
context, it is possible to derive the conclusion B in one step. Example:

A -> B. // O assumed.
A. // 1 assumed.
B; // 0K, 2 proved by imp-elim from O and 1

All Elimination: If an all formula Vx Ax is part of the context, it is possible to derive the
conclusion At for any term ¢ of the appropriate type in one step. Example:

all x A x. // O assumed.
A t; // 0K, 1 proved by all-elim from O using t

Existential Introduction: If a formula At for some term ¢ is part of the context, it is possible
to derive Jdx Ax in one step, where x is a variable of the same type as . Example:

A t. // O assumed.
ex x A x; // OK, 1 proved by ex-intro from O using t

3.2 Block Rules

Sometimes it is necessary in a proof to temporarily make an assumption only to discard it later
again. For example, for proving an implication A — B, one would first assume A holds, and
then prove B under this assumption. Once this is done, one can conclude that A — B, and this
does no longer depend on the assumption A.

The assumption A in this example behaves like a local assumption with a limited scope. In pro-
gramming languages, the usual way to introduce objects with limited scope is a block structure.
In MPC, blocks are enclosed in curly braces and introduce exactly one local object, either a
formula or a variable. The scope of this local object is its defining block and all blocks nested
inside it.

Implication Introduction: As said before, an implication A — B is proved by assuming A
and then proving B under this assumption. Once this is done, one can conclude that A — B. In
MPC, one opens a block with the local assumption A and proves inside this block the formula
B. Immediately after the formula B the block is closed again. After the closing brace of the
block, Mpc will discard all the formulas added to the context during the block (since these may
depend on the assumption A) and adds the implication A — B to the context, A being the
local formula of the block and B the last formula of the block.

Example:

{At. // O assumed.

ex x A x; // OK, 1 proved by ex-intro from 0 using t
}OK, 2 At ->ex x A x proved.
ex x A x; // ERROR: 3 assumed. Proof not found.

All Introduction: The proof of a formula with an outer universal quantifier is similar to the
proof of an implication: Under the assumption that some x is given, one proves Axz. This is
sufficient to conclude Vx Ax.

For MPC, the proof consists of a block with a local variable x with the last formula being Azx.
At the end of the block, MPC will discard all the formulas added to the context during the
block and adds the formula Yz Ax to the context.

Example:

{ x. // x assumed.
{ A x. // 0 assumed.
A x; // OK, 1 proved by 0
} 0K, 2 A x -> A x proved.
} 0K, 3 all x.A x => A x proved.

Existential Elimination: A proof of a formula B may use an existentially quantified formula
dx Ax. It typically proceeds like this: If we know that dz Ax, let us assume we have such an
x, call it xg, such that Az holds,...and from this the proof continues to prove the formula B.
This then constitutes a proof of B from Jdx Az under the side condition that the zq is not a free
variable of B.

This proof can be formulated for MPC in exactly the same fashion as outlined above using two
nested blocks. The first block introduces the local variable xy and the second block the local
assumption Axg. Once the formula B is proved from this, both blocks are closed. This in effect
proves the formula Vz.Az — B. This, together with the formula 3z Az, can be used to finally
prove B using the rule of existential elimination.

Example:

ex x.A x & B. // O assumed.
{ x0. // x0 assumed.
{ A x0 & B. // 1 assumed.
B; // 0K, 2 proved by and-elim-right from 1
} 0K, 3 A x0 & B -> B proved.
} 0K, 4 all x0.A x0 & B -> B proved.
B; // OK, 5 proved by ex-elim from 4 and O

10

3.3 Induction

Induction is used to prove that a formula Az holds for all objects x of a given algebra type
7. This is done by considering all constructors C1,...,C), of the algebra that are capable of
producing an object of the type in question and proving for each one of them that the formula
AC}; ... holds provided that the formula holds already for all arguments of C; of type 7. Once
this is done, all these formulas together, prove by the principle of induction, that Va Azx.

We illustrate this using the standard example of natural numbers.

The free algebra of natural numbers nat is generated from two constructors: Zero of type nat
and Succ of type nat — nat. For convenience we write 0 for Zero and ++n for Succn

To prove Vn An by induction, we need to prove first A0 and Vn An — A++n, then we can
conclude the desired result. For example lets prove that Vndm m = n+ 1. We proceed like this:

First 1 = 04 1 and therefore 3mm =0+ 1.

Second, assume n is given and 3mm = n + 1 holds. Then there is an mg with myg =n + 1, and
thus mg + 1 = ++4n + 1. By existential introduction, we conclude 3mm = ++n + 1 and have
proved Vn (Imm =n+1— Imm = ++n+1).

From these, by induction, we infer: Vnadmm =n + 1.

The complete proof written for MPC reads:

MPC;

INCLUDE "nat.mpc";

PROQOF; // initializing mpcl
1=0+1; // 0K, O proved trivial
ex m m=0+1; // OK, 1 proved by ex-intro from O using 1
{ n. // n assumed.
{ ex m m=n+1. // 2 assumed.
{ m0. // m0 assumed.
{ mO=n+1. // 3 assumed.

mO+1= ++n+1; // 0K, 4 proved by 3

ex m m= ++n+1; // OK, 5 proved by ex-intro from 4 using mO+1
} // 0K, 6 mO=n+1 -> ex m m= ++n+l proved.
} // OK, 7 all m0.mO=n+1 -> ex m m= ++n+l proved.
ex m m= ++n+1; // OK, 8 proved by ex-elim from 7 and 2
} // OK, 9 ex m m=n+1 -> ex m m= ++n+l proved.
} // 0K, 10 all n.ex m m=n+1 -> ex m m= ++n+l proved.
all n ex m m=n+1; // 0K, 11 proved by ind from 10 1

3.4 Proof by Cases

Proof by cases is similar to induction but weaker. Again, we prove that a proposition Az holds
for all objects x of a given algebra type 7. This is done by considering all constructors C1, ..., Cy,
of the algebra that are capable of producing an object of the type in question and proving for
each one of them that the formula AC; ... holds. In contrast to the rule of induction however,
no induction hypothesis is available in the proof.

11

A special case is the proof by cases for objects of type boole. Here, the constructors are True
and False. We prove Az by considering the two cases, proving ATrue and AFalse to conclude
Vx Ax. Typically, this formula is then applied to the boolean term ¢ in question to obtaining At.
Since this process is quite common, in addition to the usual proof by cases rule, an equivalent
and more convenient rule is built into MPC: the proof by boolean cases. To prove any formula
A, you just have to prove t — A and (—t) — A.

3.5 Intuitionistic and Classical Logic

Mpc provides two keywords CLASSIC and INTUITIONISTIC to activate proof rules for classic and
intuitionistic logic, respectively. If a proof starts with “INTUITIONISTIC PROOF;”, the proof
rule “ex falso quodlibet” is enabled. It allows to conclude from bot any formula whatsoever.
If a proof starts with “CLASSIC PROOF;” in addition the stronger proof rule of “stability” is
enabled. It allows to conclude the formula A from a statement of =—A. It is an easy exercise to
prove L — A from =—A — A, and therefore stability alone would be sufficient to have classical
logic. It is however convenient to have “ex falso quodlibet” in addition. This weaker rule is
always tested first.

As an example, we present a proof of the Pierce Formula ((P — Q) — P) — P.

CLASSIC PROOF;

PRED . P Q;
{®->Q ->P. // O assumed.
{ P -> bot. // 1 assumed.
{ P. // 2 assumed.
bot; // 0K, 3 proved by imp-elim from 1 and 2
Q; // OK, 4 proved by EFQ from 3
} // 0K, 5 P -> Q proved.
P > Q; // OK, 6 proved by 5
P; // OK, 7 proved by imp-elim from O and 6
bot; // OK, 8 proved by imp-elim from 1 and 7
} // 0K, 9 (P -> bot) -> bot proved.
(P -> bot) -> bot; // 0K, 10 proved by 9
P; // OK, 11 proved by Stability from 10
} // 0K, 12 ((P -> Q) -> P) -> P proved.
END;

12

A Library code

This MPC code may serve as an example to illustrate the concepts of MPcC.

A.1 Natural Numbers
MPC;

ALGEBRA nat O
{ nat=>nat . Succ ;
nat . Zero ;

};
nat . n m k;

// to use numbers we have to provide scheme code
// converting numbers to terms using internals of Minlog
SCHEME
"(define (make-numeric-term n)
(if (= n 0)
(pt \"Zero\")
(make-term-in-app-form
(pt \"Succ\")
(make-numeric-term (- n 1)))))" ;

SCHEME
"(define (is-numeric-term? term)
(or
(and (term-in-const-form? term)
(string=7 \"Zero\"

(const-to-name
(term-in-const-form-to-const term))))
(and (term-in-app-form? term)

(let ((op (term-in-app-form-to-op term)))
(and (term-in-const-form? op)
(string=7 \"Succ\"
(const-to-name
(term-in-const-form-to-const op)))
(is-numeric-term?
(term-in-app-form-to-arg term)))))))";

SCHEME
"(define (numeric-term-to-number term)
(if (equal? term (pt \"Zero\"))
0
(+ 1 (numeric-term-to-number
(term-in-app-form-to-arg term)))))";

SYNTAX ++ PREFIXOP Succ;

13

FUNCTION nat . Plus(nat nat)

{ SYNTAX + ADDOP Plus;

n+0 ->
n + ++m ->
REWRITE O + n ->
REWRITE ++n + m ->

REWRITE n + (m + k) ->
};

FUNCTION nat . Times(nat
{ SYNTAX * MULOP Times;

n * 0 ->
n *x ++m ->
REWRITE O*n ->
REWRITE ++n*m ->

REWRITE n * (m * k) —->
};

n+m+ k;

nat)

0;

(n*m) +n;
0;
(n*m)+m;
n *xm * k;

FUNCTION boole . Less(nat nat)

{ SYNTAX < RELOP Less;

n<?o -> False;

0 < ++n -> True;

++n < ++m -> n<m;
};

14

A.2 Polymorphic Lists
MPC;

ALGEBRA list 1 {

list . Nil;
alphal => list => list . Comns ;
s

// a generic variable of type (list alpha)
(list alpha) . 1;

SYNTAX :: PAIROP (Cons alpha);
SYNTAX : POSTFIXOP [alpha] alpha ::(Nil alpha);
// example x :: y :: z :

FUNCTION list alpha => list alpha . ListAppend (list alpha)
{ SYNTAX :+: PAIROP (ListAppend alpha);

(ListAppend alpha) (Nil alpha) -> [1_2]1_2;

(ListAppend alpha) (alpha :: 11) -> [12] alpha::(11:+:12);
s

INCLUDE "nat.mpc";

FUNCTION nat . ListLength(list alpha)
{ SYNTAX 1h PREFIXOP (ListLength alpha);
1h (Nil alpha) -> 0 ;
1h (alpha :: 1) -> ++ 1lh 1;
REWRITE 1h (11 :+: 12) -> 1h 11 + 1h 12;
I

15

	Lexical Structure
	Syntax
	Commands
	Declarations
	Assumptions and Claims
	Blocks
	Syntax Declarations

	Proofs
	Simple Rules
	Block Rules
	Induction
	Proof by Cases
	Intuitionistic and Classical Logic

	Library code
	Natural Numbers
	Polymorphic Lists

