Class VFI

  • All Implemented Interfaces:
    java.io.Serializable, java.lang.Cloneable, CapabilitiesHandler, OptionHandler, RevisionHandler, TechnicalInformationHandler, WeightedInstancesHandler

    public class VFI
    extends Classifier
    implements OptionHandler, WeightedInstancesHandler, TechnicalInformationHandler
    Classification by voting feature intervals. Intervals are constucted around each class for each attribute (basically discretization). Class counts are recorded for each interval on each attribute. Classification is by voting. For more info see:

    G. Demiroz, A. Guvenir: Classification by voting feature intervals. In: 9th European Conference on Machine Learning, 85-92, 1997.

    Have added a simple attribute weighting scheme. Higher weight is assigned to more confident intervals, where confidence is a function of entropy:
    weight (att_i) = (entropy of class distrib att_i / max uncertainty)^-bias

    BibTeX:

     @inproceedings{Demiroz1997,
        author = {G. Demiroz and A. Guvenir},
        booktitle = {9th European Conference on Machine Learning},
        pages = {85-92},
        publisher = {Springer},
        title = {Classification by voting feature intervals},
        year = {1997}
     }
     

    Faster than NaiveBayes but slower than HyperPipes.

      Confidence: 0.01 (two tailed)
    
     Dataset                   (1) VFI '-B  | (2) Hyper (3) Naive
                             ------------------------------------
     anneal.ORIG               (10)   74.56 |   97.88 v   74.77
     anneal                    (10)   71.83 |   97.88 v   86.51 v
     audiology                 (10)   51.69 |   66.26 v   72.25 v
     autos                     (10)   57.63 |   62.79 v   57.76
     balance-scale             (10)   68.72 |   46.08 *   90.5  v
     breast-cancer             (10)   67.25 |   69.84 v   73.12 v
     wisconsin-breast-cancer   (10)   95.72 |   88.31 *   96.05 v
     horse-colic.ORIG          (10)   66.13 |   70.41 v   66.12
     horse-colic               (10)   78.36 |   62.07 *   78.28
     credit-rating             (10)   85.17 |   44.58 *   77.84 *
     german_credit             (10)   70.81 |   69.89 *   74.98 v
     pima_diabetes             (10)   62.13 |   65.47 v   75.73 v
     Glass                     (10)   56.82 |   50.19 *   47.43 *
     cleveland-14-heart-diseas (10)   80.01 |   55.18 *   83.83 v
     hungarian-14-heart-diseas (10)   82.8  |   65.55 *   84.37 v
     heart-statlog             (10)   79.37 |   55.56 *   84.37 v
     hepatitis                 (10)   83.78 |   63.73 *   83.87
     hypothyroid               (10)   92.64 |   93.33 v   95.29 v
     ionosphere                (10)   94.16 |   35.9  *   82.6  *
     iris                      (10)   96.2  |   91.47 *   95.27 *
     kr-vs-kp                  (10)   88.22 |   54.1  *   87.84 *
     labor                     (10)   86.73 |   87.67     93.93 v
     lymphography              (10)   78.48 |   58.18 *   83.24 v
     mushroom                  (10)   99.85 |   99.77 *   95.77 *
     primary-tumor             (10)   29    |   24.78 *   49.35 v
     segment                   (10)   77.42 |   75.15 *   80.1  v
     sick                      (10)   65.92 |   93.85 v   92.71 v
     sonar                     (10)   58.02 |   57.17     67.97 v
     soybean                   (10)   86.81 |   86.12 *   92.9  v
     splice                    (10)   88.61 |   41.97 *   95.41 v
     vehicle                   (10)   52.94 |   32.77 *   44.8  *
     vote                      (10)   91.5  |   61.38 *   90.19 *
     vowel                     (10)   57.56 |   36.34 *   62.81 v
     waveform                  (10)   56.33 |   46.11 *   80.02 v
     zoo                       (10)   94.05 |   94.26     95.04 v
                              ------------------------------------
                                    (v| |*) |  (9|3|23)  (22|5|8) 
     

    Valid options are:

     -C
      Don't weight voting intervals by confidence
     -B <bias>
      Set exponential bias towards confident intervals
      (default = 0.6)
    Version:
    $Revision: 7180 $
    Author:
    Mark Hall (mhall@cs.waikato.ac.nz)
    See Also:
    Serialized Form
    • Constructor Detail

      • VFI

        public VFI()
    • Method Detail

      • globalInfo

        public java.lang.String globalInfo()
        Returns a string describing this search method
        Returns:
        a description of the search method suitable for displaying in the explorer/experimenter gui
      • getTechnicalInformation

        public TechnicalInformation getTechnicalInformation()
        Returns an instance of a TechnicalInformation object, containing detailed information about the technical background of this class, e.g., paper reference or book this class is based on.
        Specified by:
        getTechnicalInformation in interface TechnicalInformationHandler
        Returns:
        the technical information about this class
      • listOptions

        public java.util.Enumeration listOptions()
        Returns an enumeration describing the available options.
        Specified by:
        listOptions in interface OptionHandler
        Overrides:
        listOptions in class Classifier
        Returns:
        an enumeration of all the available options.
      • setOptions

        public void setOptions​(java.lang.String[] options)
                        throws java.lang.Exception
        Parses a given list of options.

        Valid options are:

         -C
          Don't weight voting intervals by confidence
         -B <bias>
          Set exponential bias towards confident intervals
          (default = 1.0)
        Specified by:
        setOptions in interface OptionHandler
        Overrides:
        setOptions in class Classifier
        Parameters:
        options - the list of options as an array of strings
        Throws:
        java.lang.Exception - if an option is not supported
      • weightByConfidenceTipText

        public java.lang.String weightByConfidenceTipText()
        Returns the tip text for this property
        Returns:
        tip text for this property suitable for displaying in the explorer/experimenter gui
      • setWeightByConfidence

        public void setWeightByConfidence​(boolean c)
        Set weighting by confidence
        Parameters:
        c - true if feature intervals are to be weighted by confidence
      • getWeightByConfidence

        public boolean getWeightByConfidence()
        Get whether feature intervals are being weighted by confidence
        Returns:
        true if weighting by confidence is selected
      • biasTipText

        public java.lang.String biasTipText()
        Returns the tip text for this property
        Returns:
        tip text for this property suitable for displaying in the explorer/experimenter gui
      • setBias

        public void setBias​(double b)
        Set the value of the exponential bias towards more confident intervals
        Parameters:
        b - the value of the bias parameter
      • getBias

        public double getBias()
        Get the value of the bias parameter
        Returns:
        the bias parameter
      • getOptions

        public java.lang.String[] getOptions()
        Gets the current settings of VFI
        Specified by:
        getOptions in interface OptionHandler
        Overrides:
        getOptions in class Classifier
        Returns:
        an array of strings suitable for passing to setOptions()
      • buildClassifier

        public void buildClassifier​(Instances instances)
                             throws java.lang.Exception
        Generates the classifier.
        Specified by:
        buildClassifier in class Classifier
        Parameters:
        instances - set of instances serving as training data
        Throws:
        java.lang.Exception - if the classifier has not been generated successfully
      • toString

        public java.lang.String toString()
        Returns a description of this classifier.
        Overrides:
        toString in class java.lang.Object
        Returns:
        a description of this classifier as a string.
      • distributionForInstance

        public double[] distributionForInstance​(Instance instance)
                                         throws java.lang.Exception
        Classifies the given test instance.
        Overrides:
        distributionForInstance in class Classifier
        Parameters:
        instance - the instance to be classified
        Returns:
        the predicted class for the instance
        Throws:
        java.lang.Exception - if the instance can't be classified
      • main

        public static void main​(java.lang.String[] args)
        Main method for testing this class.
        Parameters:
        args - should contain command line arguments for evaluation (see Evaluation).