Introduction to the off-line version of Yacas

by the YACAS team !

YACAS version: 1.3.6
generated on November 23, 2020

This document gives a short introduction to Yacas. Included is a brief tutorial on the syntax and
some commands to get you started using Yacas. There are also some examples.

!This text is part of the YACAS software package. Copyright 2000-2002. Principal documentation authors: Ayal Zwi Pinkus,
Serge Winitzki, Jitse Niesen. Permission is granted to copy, distribute and/or modify this document under the terms of the
GNU Free Documentation License, Version 1.1 or any later version published by the Free Software Foundation; with no Invariant
Sections, no Front-Cover Texts and no Back-Cover Texts. A copy of the license is included in the section entitled “GNU Free
Documentation License”.

Contents

1 Getting started with Yacas off-line
1.1 Imtroduction L e
1.2 Imstalling YACAS o o e e e
1.3 Using the console mode

2 Examples
2.1 Using Yacas from the console e

3 Running Yacas off-line
3.1 Imteractive session commands
quit — stop Yacas from running, from the command line L oL
restart — restart Yacas (to start with a clean slate) L oL
3.2 Command-line options L. e

4 Startup configuration
DefaultDirectory — add directory to path for Yacas scripts oo L.
PrettyPrinter’Set — set routine to use as pretty-printer L o oL
PrettyPrinter’Get — get routine to use as pretty-printer o oo
PrettyReader’Set — set routine to use as pretty-reader L L oL
PrettyReader’Get — get routine that is currently used as pretty-reader
MaxEvalDepth — set depth of recursion stack L L
HistorySize — set size of history file

5 Platform-dependent packages
Version — show version of Yacas e

6 GNU Free Documentation License

NN NN

12
12

13

Chapter 1

Getting started with Yacas off-line

1.1 Introduction

This section describes how to get started with YACAS lo-
cally by downloading and compiling the program. However,
this is not strictly necessary. You can also go online to our
web site and use YACAS in there inside your browser. The
web page contains tutorials, example calculations and lots
of documentation. This document is only useful if you plan
to build and install YACAS yourself.

1.2 Installing Yacas

Read the file INSTALL for instructions on how to compile YA-
CAS. YACAS is portable across most Unix-ish platforms and
requires only a standard C++ compiler such as g++.

The base YACAS application accepts text as input and returns
text as output. This makes it rather platform-independent.
Apart from Unix-like systems, YACAS has been compiled on
Windows and on EPOC32, aka Psion (which doesn’t come with
a standard C++ library!). The source code to compile YACAS
for Windows can be found at the Sourceforge repository (Web
URL: http://sourceforge.net/projects/yacas/).

For Unix, compilation basically amounts to the standard se-
quence

./configure
make
make install

This will install the binaries to /usr/local/bin and the library
files to /usr/local/share/yacas/.

Additionally, W TEX-formatted documentation in PostScript
and PDF formats can be produced by the command

make texdocs

or, alternatively, by passing --enable-ps-doc or
--enable-pdf-doc to ./configure when building YACAs.
In the latter case, the documentation will be automatically
rebuilt every time the documentation changes (which is useful
when maintaining the documentation).

In addition, there is also a Java version of the lower-level
interpreter. The code for this Java version can be found in the
directory “JavaYacas”, and can be compiled with the make file
“makefile.yacas”, by typing in:

make -f makefile.yacas

The interpreter can then be invoked from the command line
with:

java -jar yacas.jar

or alternatively it can be invoked as an applet, by opening
yacasconsole.html.

The binary files that comprise the entire binary release for
the Java version are:

1. yacas.jar - the Java class files in one jar file.
2. yacasconsole.html - the file that launches the applet.

3. hints.txt - the hints that are shown in the applet (the grey
box with commands that match what you are typing in at
that moment).

The Java version has almost all the features the C++ version
has. In fact, there is no reason the Java version should not
have all the same features. Not all command line arguments are
available yet, and the command line prompt does not have the
history yet.

1.3 Using the console mode

You can run YACAS in the console mode simply by typing yacas.
The YACAS command prompt looks like this:

In>
and YACAS’s answers appear after the prompt
Out>

A YAcAS session may be terminated by typing Exit() or
quit. Pressing “C will also quit YACAS; however, pressing ~C
while YACAS is busy with a calculation will stop just that cal-
culation. A session can be restarted (forgetting all previous
definitions and results) by typing

restart

Typically, you would enter one statement per line, for example

In> Sin(Pi/2);
Out> 1;

Statements should end with a semicolon (;) although this is
not required in interactive sessions (YACAS will append a semi-
colon at end of line to finish the statement).

Type Example(); to get some random examples of YACAS
calculations.

The command line has a history list, so it should be easy to
browse through the expressions you entered previously using the
Up and Down arrow keys.

When a few characters have been typed, the command line
will use the characters before the cursor as a filter into the his-
tory, and allow you to browse through all the commands in
the history that start with these characters quickly, instead of
browsing through the entire history.

Typing the first few characters of a previous expression and
then hitting the TAB key makes YACAS recall the last expression
in the history list that matches these first characters.

Commands spanning multiple lines can (and actually have
to) be entered by using a trailing backslash
at end of each continued line. For example:

In> a:=2+3+

Error on line 1 in file [CommandLine]
Line error occurred on:

>>>

Error parsing expression

In> a:=2+3+ \
In> 1
Out> 6;

The error after our first attempt occurred because YACAS has
appended a semicolon at end of the first line and 2+3+; is not
a valid YACAS expression.

Incidentally, any text YACAS prints without a prompt is ei-
ther messages printed by functions as their side-effect, or error
messages. Resulting values of expressions are always printed
after an Qut> prompt.

Chapter 2

Examples

This is a small tour of the capabilities YACAS currently offers.
Note that this list of examples is far from complete. YACAS
contains a few hundred commands, of which only a few are
shown here.

Additional example calculations including the results can be
found here:

e A selection of calculations from the Wester benchmark, in
Essays on Yacas, Chapter 2.

e Some additional example calculations (Web URL:
mybench2.html) that YACAS can currently perform.

2.1 Using Yacas from the console

Command-line options

The default operation of YACAS is to run in the interactive con-
sole mode. YACAS accepts several options that modify its oper-
ation. Here is a summary of options:

e filename ... (read and execute a file or several files)
e —c (omit line prompts)

e -d (print default directory)
L v

£

=d (
-v (print version information)

-f (execute standard input as one statement)

-p (do not use terminal capabilities)

e -t (enable extra history features)

e --archive filename (use a given library archive file)
e —-init filename (use a given initial file)

e —-patchload (use PatchLoad to load files)

e --read-eval-print expression (call this expression for the
read-eval-print loop)

e --rootdir directory (specify default directory for scripts)

e ——server port (start YACAS as a network server on given
port)

e --single-user-server (If in server mode, start it in
single-user mode)

e —-verbose-debug (turn on showing some additional debug-
ging information on screen)

e --disable-compiled-plugins (disable loading of com-
piled plugins, loading the script versions instead)

e --stacksize size (change size of stack arguments are
stored on)

e --execute ezpression (run expression from the command
line)

Options can be combined, for example
yacas -pc filename

will read and execute the file filename non-interactively without
using terminal capabilities and without printing prompts.

Here is a more detailed description of the command-line op-
tions.

yacas -c

Inhibit printing of prompts In> and Out>. Useful for non-

interactive sessions.
yacas -f

Reads standard input as one file, but executes only the first
statement in it. (You may want to use a statement block to
have several statements executed.)

yacas -p

Does not use terminal capabilities, no fancy editing on the com-
mand line and no escape sequences printed. Useful for non-
interactive sessions.

yacas -t

Enable some extra history recall functionality in console mode:
after executing a command from the history list, the next un-
modified command from the history list will be automatically
entered on the command line.

yacas [options] {filename}

Reads and executes commands in the filename and exits. Equiv-
alent to Load().

yacas -v

Prints version information and exits. (This is the same infor-
mation as returned by Version().)

yacas -d

Prints the path to the YAcas default library directory (this
information is compiled into the YACAS executable) and exits.

yacas —-patchload

Will load every file on the command line with the PatchLoad
command instead of the normal Load command, This is useful
for generating HTML pages for a web site using the YACAS
scripting language, much like you can do with the PHP scripting
language.

yacas --init [file]

Tells the system to load file as the initialization file. By default
it loads the file yacasinit.ys from the scripts directory. Thus
for customization one has two options: write a /.yacasrc file
with initialization code (as it is loaded after the initialization
script is loaded), or write a custom initialization script that
first uses yacasinit.ys and adds some extra custom code.

yacas --read-eval-print [expression]

Call expression for the read-eval-print loop. The default
read-eval-print loop is implemented in the initialization script
yacasinit.ys as the function REP. The default behavior is there-
fore equivalent to --read-eval-print REP().

There is also a fallback read-eval-print loop in the kernel; it
can be invoked by passing an empty string to this command line
option, as --read-eval-print "".

An alternative way to replace the default read-eval-print loop
is to write a custom initialization script that implements the
read-eval-print loop function REP() instead of yacasinit.ys.

Care has to be taken with this option because a Yacas session
may become unusable if the read-eval-print expression doesn’t
function correctly.

yacas --server <port>

On some platforms server mode can be enabled at build time
by passing the flag -—enable-server to the ./configure script.
YAcCAS then allows you to pass the flag --server with a port
number behind it, and the YACAS executable will listen to the
socket behind that port instead of waiting for user input on the
console.

Commands can be sent to the server by sending a text line as
one block of data, and the server will respond back with another
text block.

One can test this function by using telnet. First, set up the
server by calling

yacas --server 9734

and then invoke telnet in another window, for example:
telnet 127.0.0.1 9734

Then type a line of Yacas input and hit Enter. The result will
be one line that you will get back from the Yacas server.

Some security measures and resource management measures
have been taken. No more than 10 connections can be alive
at any time, a calculation cannot take more than 30 seconds,
and YACAS operates in the secure mode, much like calling an
expression by passing it as an argument to the Secure function.
This means that no system calls are allowed, and no writing to
local files, amongst other things. Something that has not been
taken care of yet is memory use. A calculation could take up
all memory, but not for longer than 30 seconds.

The server is single-threaded, but has persistent sessions for
at most 10 users at a time, from which it can service requests in a
sequential order. To make the service multi-threaded, a solution
might be to have a proxy in front of the service listening to the
port, redirecting it to different processes which get started up
for users (this has not been tried yet).

The flag —single-user-server can be passed on to instruct
yacas to start in single-user mode. In this mode, unsecure oper-
ations can be performed (like reading from and writing to files),
and the calculation may take more than 30 seconds. The yacas
process will automatically be shut down when the last session
is closed or when “Exit();” is sent.

yacas --rootdir [directory]

Tells the system where to find the library scripts. Here,
directory is a path that is passed to DefaultDirectory. It
is also possible to give a list of directories, separated by a colon,
e.g. yacas --rootdir scripts/:morescripts/. Note that it is
not necessary to append a trailing slash to the directory names.

yacas --archive [file]

Use a compressed archive instead of the script library.

YACAS has an experimental system where files can be com-
pressed into one file, and accessed through this command line
option. The advantages are:

1. Smaller disk/memory use (useful if YACAS is used on small
hand-held computers).

2. No problems with directory path separators: "path/file”
will always resolve to the right file, no matter what plat-
form (read: Windows) it runs on.

3. The start-up time of the program might improve a little,
since a smaller file is loaded from disk (disk access being
slow), and then decompressed in memory, which might be
a lot faster than loading from disk.

An additional savings is due to the fact that the script files
are stripped from white spaces and comments, making them
smaller and faster loading.

To prepare the compressed library archive, run ./configure
with the command line option --enable-archive.

The result should be the archive file scripts.dat. Then
launch YAcAs with the command line option --archive
scripts.dat, with the file scripts.dat in the current direc-
tory.

The reason that the scripts.dat file is not built automati-
cally is that it is not tested, at this time, that the build process
works on all platforms. (Right now it works on Unix, MacOSX,
and Win32.)

Alternatively, configure Yacas with

./configure --enable-archive

and the archive file scripts.dat will be created in the
ramscripts/ subdirectory.

When an archive is present, Yacas will try to load it before it
looks for scripts from the library directories. Typing

make archivetest -f makefile.compressor
in the ramscripts/ directory runs all the test scripts using the
archived files.

The currently supported compression schemes are uncom-
pressed and compressed with minilzo. Script file stripping (re-
moving whitespace and comments) may be disabled by editing
compressor.cpp (variable strip_script).

yacas --disable-compiled-plugins
Disable loading of compiled scripts, in favor of scripts them-
selves. This is useful when developing the scripts that need to be

compiled in the end, or when the scripts have not been compiled
yet.

yacas --stacksize <size>

Yacas maintains an internal stack for arguments. For nested
function calls, all arguments currently used are on this stack.
The size of this stack is 50000 be default.

For a function that would take 4 arguments and has one re-
turn value, there would be 5 places reserved on this stack, and
the function could call itself recursively 10000 steps deep.

This differs from the MaxEvalDepth mechanism. The MaxE-
valDepth mechanism allows one to specify the number of sepa-
rate stack frames (number of calls, nested), instead of the num-
ber of arguments pushed on the stack. MaxEvalDepth was in-
troduced to protect the normal C++ stack.

yacas --execute <expression>

This instructs Yacas to run a certain expression, passed in over
the command line, before dropping to the read-eval-print loop.
This can be used to load a file before dropping to the command
line without exiting (if there are files to run specified on the
command line, Yacas will exit after running these scripts). Al-
ternatively, the expression can exit the interpreter immediately
by calling Exit() ;. When used in combination with -pc, the
Yacas interpreter can be used to calculate something and print
the result to standard output. Example:

usery, ./yacas -pc —-—execute ’[Echo("answer ",D(x)Sin(x));Exit();]’
answer Cos(x)
user’,

Chapter 3

Running Yacas off-line

3.1 Interactive session commands

This section describes the special commands for the Yacas inter-
active sessions (for example, to restart or to exit the interpreter).
These commands are not functions but special directives that
only apply while running Yacas interactively. They should not
be used in scripts.

quit — stop Yacas from running,
from the command line

restart — restart Yacas (to start
with a clean slate)

(YAcas internal)
Calling format:

quit
restart

Description:

Type quit or restart at the Yacas prompt to exit or to restart
the interpreter.

The directives quit and restart are not reserved words or
variable names. They take effect only when typed as first char-
acters at a prompt.

Pressing Ctrl-C will stop the currently running calculation.
If there is no currently running calculation, Ctr1-C will quit the
interpreter.

When the interpreter quits, it saves the command history (so
quitting by Ctrl-C does not mean a ”crash”).

Examples:

To be effective, the directive must be typed immediately after
the prompt:

In> quit
Quitting...

We can use variables named quit:

In> 1+quit
Out> quit+1;

There is no effect if we type some spaces first:

In>
Out> restart;

restart

See also: Exit

3.2 Command-line options

The default operation of YACAS is to run in the interactive con-
sole mode. YACAS accepts several options that modify its oper-
ation. Here is a summary of options:

e filename ... (read and execute a file or several files)
e —c (omit line prompts)

e -d (print default directory)
e -v (print version information)

e -f (execute standard input as one statement)

-p (do not use terminal capabilities)

e -t (enable extra history features)

e —-archive filename (use a given library archive file)
e --init filename (use a given initial file)

e —-patchload (use PatchLoad to load files)

e --read-eval-print expression (call this expression for the
read-eval-print loop)

e —-rootdir directory (specify default directory for scripts)
e ——server port (start YACAS as a network server on given
port)

e --single-user-server (If in server mode, start it in
single-user mode)

e --verbose-debug (turn on showing some additional debug-
ging information on screen)

e —-disable-compiled-plugins (disable loading of com-
piled plugins, loading the script versions instead)

e —-stacksize size (change size of stack arguments are
stored on)

e —-execute ezpression (run expression from the command
line)

Options can be combined, for example
yacas -pc filename

will read and execute the file filename non-interactively without
using terminal capabilities and without printing prompts.

Here is a more detailed description of the command-line op-
tions.

yacas -c

Inhibit printing of prompts In> and Out>. Useful for non-

interactive sessions.
yacas -f

Reads standard input as one file, but executes only the first
statement in it. (You may want to use a statement block to
have several statements executed.)

yacas -p

Does not use terminal capabilities, no fancy editing on the com-
mand line and no escape sequences printed. Useful for non-
interactive sessions.

yacas -t

Enable some extra history recall functionality in console mode:
after executing a command from the history list, the next un-
modified command from the history list will be automatically
entered on the command line.

yacas [options] {filename}

Reads and executes commands in the filename and exits. Equiv-
alent to Load ().

yacas -v

Prints version information and exits. (This is the same infor-
mation as returned by Version().)

yacas -d

Prints the path to the YAcas default library directory (this
information is compiled into the YACAS executable) and exits.

yacas --patchload

Will load every file on the command line with the PatchLoad
command instead of the normal Load command, This is useful
for generating HTML pages for a web site using the YACAS
scripting language, much like you can do with the PHP scripting
language.

yacas --init [file]

Tells the system to load file as the initialization file. By default
it loads the file yacasinit.ys from the scripts directory. Thus
for customization one has two options: write a /.yacasrc file
with initialization code (as it is loaded after the initialization
script is loaded), or write a custom initialization script that
first uses yacasinit.ys and adds some extra custom code.

yacas -—-read-eval-print [expression]

Call expression for the read-eval-print loop. The default
read-eval-print loop is implemented in the initialization script
yacasinit.ys as the function REP. The default behavior is there-
fore equivalent to --read-eval-print REP().

There is also a fallback read-eval-print loop in the kernel; it
can be invoked by passing an empty string to this command line
option, as --read-eval-print "".

An alternative way to replace the default read-eval-print loop
is to write a custom initialization script that implements the
read-eval-print loop function REP() instead of yacasinit.ys.

Care has to be taken with this option because a Yacas session
may become unusable if the read-eval-print expression doesn’t
function correctly.

yacas --server <port>

On some platforms server mode can be enabled at build time
by passing the flag -—enable-server to the ./configure script.
YAcCAS then allows you to pass the flag —-server with a port
number behind it, and the YACAS executable will listen to the
socket behind that port instead of waiting for user input on the
console.

Commands can be sent to the server by sending a text line as
one block of data, and the server will respond back with another
text block.

One can test this function by using telnet. First, set up the
server by calling

yacas --—server 9734

and then invoke telnet in another window, for example:
telnet 127.0.0.1 9734

Then type a line of Yacas input and hit Enter. The result will
be one line that you will get back from the Yacas server.

Some security measures and resource management measures
have been taken. No more than 10 connections can be alive
at any time, a calculation cannot take more than 30 seconds,
and YACAS operates in the secure mode, much like calling an
expression by passing it as an argument to the Secure function.
This means that no system calls are allowed, and no writing to
local files, amongst other things. Something that has not been
taken care of yet is memory use. A calculation could take up
all memory, but not for longer than 30 seconds.

The server is single-threaded, but has persistent sessions for
at most 10 users at a time, from which it can service requests in a
sequential order. To make the service multi-threaded, a solution
might be to have a proxy in front of the service listening to the
port, redirecting it to different processes which get started up
for users (this has not been tried yet).

The flag —single-user-server can be passed on to instruct
yacas to start in single-user mode. In this mode, unsecure oper-
ations can be performed (like reading from and writing to files),
and the calculation may take more than 30 seconds. The yacas
process will automatically be shut down when the last session

B

is closed or when “Exit();” is sent.
yacas —-rootdir [directory]

Tells the system where to find the library scripts. Here,
directory is a path that is passed to DefaultDirectory. It
is also possible to give a list of directories, separated by a colon,
e.g. yacas —-rootdir scripts/:morescripts/. Note that it is
not necessary to append a trailing slash to the directory names.

yacas --archive [file]

Use a compressed archive instead of the script library.

YACAS has an experimental system where files can be com-
pressed into one file, and accessed through this command line
option. The advantages are:

1. Smaller disk/memory use (useful if YACAS is used on small
hand-held computers).

2. No problems with directory path separators: "path/file”
will always resolve to the right file, no matter what plat-
form (read: Windows) it runs on.

3. The start-up time of the program might improve a little,
since a smaller file is loaded from disk (disk access being
slow), and then decompressed in memory, which might be
a lot faster than loading from disk.

An additional savings is due to the fact that the script files
are stripped from white spaces and comments, making them
smaller and faster loading.

To prepare the compressed library archive, run ./configure
with the command line option --enable-archive.

The result should be the archive file scripts.dat. Then
launch YAcAs with the command line option --archive
scripts.dat, with the file scripts.dat in the current direc-
tory.

The reason that the scripts.dat file is not built automati-
cally is that it is not tested, at this time, that the build process
works on all platforms. (Right now it works on Unix, MacOSX,
and Win32.)

Alternatively, configure Yacas with

./configure --enable-archive

and the archive file scripts.dat will be created in the
ramscripts/ subdirectory.

When an archive is present, Yacas will try to load it before it
looks for scripts from the library directories. Typing

make archivetest -f makefile.compressor

in the ramscripts/ directory runs all the test scripts using the
archived files.

The currently supported compression schemes are uncom-
pressed and compressed with minilzo. Script file stripping (re-
moving whitespace and comments) may be disabled by editing
compressor.cpp (variable strip_script).

yacas --disable-compiled-plugins

Disable loading of compiled scripts, in favor of scripts them-
selves. This is useful when developing the scripts that need to be
compiled in the end, or when the scripts have not been compiled
yet.

yacas --stacksize <size>

Yacas maintains an internal stack for arguments. For nested
function calls, all arguments currently used are on this stack.
The size of this stack is 50000 be default.

For a function that would take 4 arguments and has one re-
turn value, there would be 5 places reserved on this stack, and
the function could call itself recursively 10000 steps deep.

This differs from the MaxEvalDepth mechanism. The MaxE-
valDepth mechanism allows one to specify the number of sepa-
rate stack frames (number of calls, nested), instead of the num-
ber of arguments pushed on the stack. MaxEvalDepth was in-
troduced to protect the normal C++ stack.

yacas --execute <expression>

This instructs Yacas to run a certain expression, passed in over
the command line, before dropping to the read-eval-print loop.
This can be used to load a file before dropping to the command
line without exiting (if there are files to run specified on the
command line, Yacas will exit after running these scripts). Al-
ternatively, the expression can exit the interpreter immediately
by calling Exit();. When used in combination with -pc, the
Yacas interpreter can be used to calculate something and print
the result to standard output. Example:

user’, ./yacas -pc —-—execute ’[Echo("answer ",D(x)Sin(x));Exit();]’
answer Cos(x)
user’,

Chapter 4

Startup configuration

Yacas allows you to configure a few things at startup. The file
7 .yacasrc is written in the Yacas language and will be executed
when Yacas is run. The following functions can be useful in the
7 .yacasre file.

DefaultDirectory — add directory to
path for Yacas scripts

(YAcas internal)
Calling format:
DefaultDirectory(path)
Parameters:

path — a string containing a full path where yacas script files
reside

Description:

When loading files, yacas is also allowed to look in the folder
“path”. path will be prepended to the file name before trying to
load the file. This means that “path” should end with a forward
slash (under Unix-like operating systems).

Yacas first tries to load a file from the current directory, and
otherwise it tries to load from directories defined with this func-
tion, in the order they are defined. Note there will be at least
one directory specified at start-up time, defined during compi-
lation. This is the directory Yacas searches for the initialization
scripts and standard scripts.

Examples:

In> DefaultDirectory("/home/user/myscripts/");
Out> True;

See also: Load, Use, DefLoad, FindFile

PrettyPrinter’Set — set routine to
use as pretty-printer

PrettyPrinter’Get — get routine to
use as pretty-printer

(standard library)

Calling format:

PrettyPrinter’Set (printer)
PrettyPrinter’Set ()
PrettyPrinter’Get ()

Parameters:

printer — a string containing the name of a function that can
?pretty-print” an expression.

Description:

This function sets up the function printer to print out the results
on the command line. This can be reset to the internal printer
with PrettyPrinter’Set() (when no argument is given, the
system returns to the default).

Currently implemented prettyprinters are:
TeXForm, Print, OMForm, CForm and DefaultPrint.

PrettyPrinter’Get () returns the current pretty printer, or
it returns an empty string if the default pretty printer is used.

PrettyForm,

Examples:

In> Taylor(x,0,5)Sin(x)
Out> x-x"3/6+x°5/120;
In> PrettyPrinter’Set("PrettyForm");

True
In> Taylor(x,0,5)Sin(x)

3 5
X X
A

6 120

In> PrettyPrinter’Set();
Out> True;

In> Taylor(x,0,5)Sin(x)
OQut> x-x"3/6+x~5/120;

See also: PrettyForm, Write, TeXForm, CForm, OMForm,

PrettyReader’Set, PrettyReader’Get

PrettyReader’Set — set routine to
use as pretty-reader

PrettyReader’Get — get routine that
is currently used as pretty-reader

(standard library)

10

Calling format:

PrettyReader’Set (reader)
PrettyReader’Set ()
PrettyReader’Get ()

Parameters:

reader — a string containing the name of a function that can
read an expression from current input.

Description:

This function sets up the function reader to read in the input on
the command line. This can be reset to the internal reader with
PrettyReader’Set() (when no argument is given, the system
returns to the default).

Currently implemented PrettyReaders
OMRead.

PrettyReader’Get () returns the current reader, or it returns
an empty string if the default pretty printer is used.

are: LispRead,

Examples:
In> Taylor(x,0,5)Sin(x)
OQut> x-x"3/6+x75/120
In> PrettyReader’Set("LispRead")
Out> True

In> (Taylor x 0 5 (Sin x))
Out> x-x~3/6+x75/120

See also: Read, LispRead, OMRead, PrettyPrinter’Set,
PrettyPrinter’Get

MaxEvalDepth — set depth of recur-
sion stack

(YAcCAs internal)
Calling format:
MaxEvalDepth(n)
Parameters:
n — integer
Description:

Sets the maximum depth of recursive function call. An error
message is printed when too many recursive calls are executed,
and this function can be used to increase or decrease the limit
as necessary.

HistorySize — set size of history file
(YAcaAs internal)
Calling format:
HistorySize(n)
Parameters:

n — number of lines to store in history file

Description:

11

When exiting, yacas saves the command line history to a file
7 .yacas history. By default it will save the last 1024 lines.
The default can be overridden with this function. Passing -1
tells the system to save all lines.

Examples:
In> HistorySize(200)
Out> True;

In> quit

See also: quit

Chapter 5

Platform-dependent packages

Certain facilities have been developed for use on Unix-like
platforms, which is currently the main development target for
Yacas. Other facilities have limited support on the Windows
platform as well. These functions are described in this chapter.

Version — show version of Yacas

(YAcas internal)
Calling format:
Version()
Description:

The function Version() returns a string representing the version
of the currently running Yacas interpreter.

Examples:

In> Version()

Out> "1.0.48rev3";

In> LessThan(Version(), "1.0.47")
Out> False;

In> GreaterThan(Version(), "1.0.47")
Out> True;

The last two calls show that the LessThan and GreaterThan
functions can be used for comparing version numbers. This
method is only guaranteed, however, if the version is always
expressed in the form d.d.dd as above.

See also: LessThan, GreaterThan

12

Chapter 6

GNU Free Documentation License

Version 1.1, March 2000

Copyright (C) 2000 Free Software Foundation, Inc.

59 Temple Place, Suite 330
Boston, MA, 02111-1307
UsA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The purpose of this License is to make a manual, textbook,
or other written document “free” in the sense of freedom: to
assure everyone the effective freedom to copy and redistribute
it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author
and publisher a way to get credit for their work, while not being
considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that deriva-
tive works of the document must themselves be free in the same
sense. It complements the GNU General Public License, which
is a copyleft license designed for free software.

We have designed this License in order to use it for man-
uals for free software, because free software needs free docu-
mentation: a free program should come with manuals providing
the same freedoms that the software does. But this License is
not limited to software manuals; it can be used for any textual
work, regardless of subject matter or whether it is published
as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

Applicability and Definitions

This License applies to any manual or other work that contains a
notice placed by the copyright holder saying it can be distributed
under the terms of this License. The “Document”, below, refers
to any such manual or work. Any member of the public is a
licensee, and is addressed as “you”.

A “Modified Version” of the Document means any work con-
taining the Document or a portion of it, either copied verbatim,
or with modifications and/or translated into another language.

A “Secondary Section” is a named appendix or a front-matter
section of the Document that deals exclusively with the rela-
tionship of the publishers or authors of the Document to the
Document’s overall subject (or to related matters) and contains
nothing that could fall directly within that overall subject. (For
example, if the Document is in part a textbook of mathematics,
a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the
subject or with related matters, or of legal, commercial, philo-
sophical, ethical or political position regarding them.

13

The “Invariant Sections” are certain Secondary Sections
whose titles are designated, as being those of Invariant Sections,
in the notice that says that the Document is released under this
License.

The “Cover Texts” are certain short passages of text that are
listed, as Front-Cover Texts or Back-Cover Texts, in the notice
that says that the Document is released under this License.

A “Transparent” copy of the Document means a machine-
readable copy, represented in a format whose specification is
available to the general public, whose contents can be viewed
and edited directly and straightforwardly with generic text ed-
itors or (for images composed of pixels) generic paint programs
or (for drawings) some widely available drawing editor, and that
is suitable for input to text formatters or for automatic transla-
tion to a variety of formats suitable for input to text formatters.
A copy made in an otherwise Transparent file format whose
markup has been designed to thwart or discourage subsequent
modification by readers is not Transparent. A copy that is not
“Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include
plain ASCII without markup, Texinfo input format, LaTeX in-
put format, SGML or XML using a publicly available DTD, and
standard-conforming simple HTML designed for human modi-
fication. Opaque formats include PostScript, PDF, proprietary
formats that can be read and edited only by proprietary word
processors, SGML or XML for which the DTD and/or process-
ing tools are not generally available, and the machine-generated
HTML produced by some word processors for output purposes
only.

The “Title Page” means, for a printed book, the title page
itself, plus such following pages as are needed to hold, legibly,
the material this License requires to appear in the title page. For
works in formats which do not have any title page as such, “Title
Page” means the text near the most prominent appearance of
the work’s title, preceding the beginning of the body of the text.

Verbatim Copying

You may copy and distribute the Document in any medium,
either commercially or noncommercially, provided that this Li-
cense, the copyright notices, and the license notice saying this
License applies to the Document are reproduced in all copies,
and that you add no other conditions whatsoever to those of
this License. You may not use technical measures to obstruct
or control the reading or further copying of the copies you make
or distribute. However, you may accept compensation in ex-
change for copies. If you distribute a large enough number of
copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated
above, and you may publicly display copies.

Copying in Quantity

If you publish printed copies of the Document numbering more
than 100, and the Document’s license notice requires Cover
Texts, you must enclose the copies in covers that carry, clearly
and legibly, all these Cover Texts: Front-Cover Texts on the
front cover, and Back-Cover Texts on the back cover. Both cov-
ers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with
all words of the title equally prominent and visible. You may
add other material on the covers in addition. Copying with
changes limited to the covers, as long as they preserve the title
of the Document and satisfy these conditions, can be treated as
verbatim copying in other respects.

If the required texts for either cover are too voluminous to
fit legibly, you should put the first ones listed (as many as fit
reasonably) on the actual cover, and continue the rest onto ad-
jacent pages.

If you publish or distribute Opaque copies of the Docu-
ment numbering more than 100, you must either include a
machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a publicly-accessible
computer-network location containing a complete Transparent
copy of the Document, free of added material, which the gen-
eral network-using public has access to download anonymously
at no charge using public-standard network protocols. If you
use the latter option, you must take reasonably prudent steps,
when you begin distribution of Opaque copies in quantity, to
ensure that this Transparent copy will remain thus accessible at
the stated location until at least one year after the last time you
distribute an Opaque copy (directly or through your agents or
retailers) of that edition to the public.

It is requested, but not required, that you contact the authors
of the Document well before redistributing any large number of
copies, to give them a chance to provide you with an updated
version of the Document.

Modifications

You may copy and distribute a Modified Version of the Docu-
ment under the conditions of sections 2 and 3 above, provided
that you release the Modified Version under precisely this Li-
cense, with the Modified Version filling the role of the Docu-
ment, thus licensing distribution and modification of the Modi-
fied Version to whoever possesses a copy of it. In addition, you
must do these things in the Modified Version:

1. Use in the Title Page (and on the covers, if any) a title
distinct from that of the Document, and from those of pre-
vious versions (which should, if there were any, be listed
in the History section of the Document). You may use the
same title as a previous version if the original publisher of

that version gives permission.

List on the Title Page, as authors, one or more persons or
entities responsible for authorship of the modifications in
the Modified Version, together with at least five of the prin-
cipal authors of the Document (all of its principal authors,
if it has less than five).

State on the Title page the name of the publisher of the
Modified Version, as the publisher.

Preserve all the copyright notices of the Document.

5. Add an appropriate copyright notice for your modifications
adjacent to the other copyright notices.

Include, immediately after the copyright notices, a license
notice giving the public permission to use the Modified

14

Version under the terms of this License, in the form shown
in the Addendum below.

Preserve in that license notice the full lists of Invariant
Sections and required Cover Texts given in the Document’s
license notice.

8. Include an unaltered copy of this License.

9. Preserve the section entitled “History”, and its title, and
add to it an item stating at least the title, year, new au-
thors, and publisher of the Modified Version as given on
the Title Page. If there is no section entitled “History” in
the Document, create one stating the title, year, authors,
and publisher of the Document as given on its Title Page,
then add an item describing the Modified Version as stated
in the previous sentence.

10. Preserve the network location, if any, given in the Docu-
ment for public access to a Transparent copy of the Docu-
ment, and likewise the network locations given in the Doc-
ument for previous versions it was based on. These may be
placed in the “History” section. You may omit a network
location for a work that was published at least four years
before the Document itself, or if the original publisher of

the version it refers to gives permission.

11. In any section entitled “Acknowledgements” or “Dedica-
tions”, preserve the section’s title, and preserve in the sec-
tion all the substance and tone of each of the contributor

acknowledgements and/or dedications given therein.

12. Preserve all the Invariant Sections of the Document, unal-
tered in their text and in their titles. Section numbers or

the equivalent are not considered part of the section titles.

13. Delete any section entitled “Endorsements”. Such a section

may not be included in the Modified Version.

14. Do not retitle any existing section as “Endorsements” or

to conflict in title with any Invariant Section.

If the Modified Version includes new front-matter sections or
appendices that qualify as Secondary Sections and contain no
material copied from the Document, you may at your option
designate some or all of these sections as invariant. To do this,
add their titles to the list of Invariant Sections in the Modified
Version’s license notice. These titles must be distinct from any
other section titles.

You may add a section entitled “Endorsements”, provided it
contains nothing but endorsements of your Modified Version by
various parties — for example, statements of peer review or that
the text has been approved by an organization as the authori-
tative definition of a standard.

You may add a passage of up to five words as a Front-Cover
Text, and a passage of up to 25 words as a Back-Cover Text, to
the end of the list of Cover Texts in the Modified Version. Only
one passage of Front-Cover Text and one of Back-Cover Text
may be added by (or through arrangements made by) any one
entity. If the Document already includes a cover text for the
same cover, previously added by you or by arrangement made
by the same entity you are acting on behalf of, you may not add
another; but you may replace the old one, on explicit permission
from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by
this License give permission to use their names for publicity for
or to assert or imply endorsement of any Modified Version.

Combining Documents

You may combine the Document with other documents released
under this License, under the terms defined in section 4 above

for modified versions, provided that you include in the combina-
tion all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your com-
bined work in its license notice.

The combined work need only contain one copy of this Li-
cense, and multiple identical Invariant Sections may be replaced
with a single copy. If there are multiple Invariant Sections with
the same name but different contents, make the title of each
such section unique by adding at the end of it, in parentheses,
the name of the original author or publisher of that section if
known, or else a unique number. Make the same adjustment to
the section titles in the list of Invariant Sections in the license
notice of the combined work.

In the combination, you must combine any sections entitled
“History” in the various original documents, forming one sec-
tion entitled “History”; likewise combine any sections entitled
“Acknowledgements”, and any sections entitled “Dedications”.
You must delete all sections entitled “Endorsements.”

Collections of Documents

You may make a collection consisting of the Document and other
documents released under this License, and replace the individ-
ual copies of this License in the various documents with a single
copy that is included in the collection, provided that you fol-
low the rules of this License for verbatim copying of each of the
documents in all other respects.

You may extract a single document from such a collection,
and distribute it individually under this License, provided you
insert a copy of this License into the extracted document, and
follow this License in all other respects regarding verbatim copy-
ing of that document.

Aggregation With Independent Works

A compilation of the Document or its derivatives with other
separate and independent documents or works, in or on a volume
of a storage or distribution medium, does not as a whole count
as a Modified Version of the Document, provided no compilation
copyright is claimed for the compilation. Such a compilation is
called an “aggregate”, and this License does not apply to the
other self-contained works thus compiled with the Document, on
account of their being thus compiled, if they are not themselves
derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to
these copies of the Document, then if the Document is less
than one quarter of the entire aggregate, the Document’s Cover
Texts may be placed on covers that surround only the Doc-
ument within the aggregate. Otherwise they must appear on
covers around the whole aggregate.

Translation

Translation is considered a kind of modification, so you may
distribute translations of the Document under the terms of sec-
tion 4. Replacing Invariant Sections with translations requires
special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addi-
tion to the original versions of these Invariant Sections. You
may include a translation of this License provided that you also
include the original English version of this License. In case of a
disagreement between the translation and the original English
version of this License, the original English version will prevail.

15

Termination

You may not copy, modify, sublicense, or distribute the Docu-
ment except as expressly provided for under this License. Any
other attempt to copy, modify, sublicense or distribute the Doc-
ument is void, and will automatically terminate your rights un-
der this License. However, parties who have received copies, or
rights, from you under this License will not have their licenses
terminated so long as such parties remain in full compliance.

Future Revisions of This License

The Free Software Foundation may publish new, revised versions
of the GNU Free Documentation License from time to time.
Such new versions will be similar in spirit to the present version,
but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version
number. If the Document specifies that a particular numbered
version of this License “or any later version” applies to it, you
have the option of following the terms and conditions either
of that specified version or of any later version that has been
published (not as a draft) by the Free Software Foundation. If
the Document does not specify a version number of this License,
you may choose any version ever published (not as a draft) by
the Free Software Foundation.

ADDENDUM: How to use this License for
your documents

To use this License in a document you have written, include
a copy of the License in the document and put the following
copyright and license notices just after the title page:

Copyright (C) YEAR YOUR NAME. Permission is
granted to copy, distribute and/or modify this
document under the terms of the GNU Free
Documentation License, Version 1.1 or any later
version published by the Free Software Foundation;
with the Invariant Sections being LIST THEIR
TITLES, with the Front-Cover Texts being LIST, and
with the Back-Cover Texts being LIST. A copy of
the license is included in the section entitled
¢‘GNU Free Documentation License’’.

If you have no Invariant Sections, write “with no Invariant
Sections” instead of saying which ones are invariant. If you have
no Front-Cover Texts, write “no Front-Cover Texts” instead of
“Front-Cover Texts being LIST”; likewise for Back-Cover Texts.

If your document contains nontrivial examples of program
code, we recommend releasing these examples in parallel under
your choice of free software license, such as the GNU General
Public License, to permit their use in free software.

Index

~C, 2

command history, 2

command-line options, 4, 7
summary, 4, 7

DefaultDirectory, 10

Example, 2

executing script files, 4, 8

Exit, 2

getting printed manuals, 2

HistorySize, 11

MaxEvalDepth, 11
multi-line commands, 3

options, 7
PrettyPrinter’Get, 10
PrettyPrinter’Set, 10
PrettyReader’Get, 10
PrettyReader’Set, 10

quit, 2
quit, 7

restart, 2
restart, 7

TAB completion, 2
using compressed libraries, 5, 8

Version, 12

16

