Programming in Yacas, function reference

by the YACAS team !

YACAS version: 1.3.6
generated on November 23, 2020

This is the second part of the Yacas function reference. This reference explains functions that are
used in the Yacas source code that is underneath what the user sees. The documentation in this
section is thus mostly useful to people who are maintaining Yacas.

!This text is part of the YACAS software package. Copyright 2000-2002. Principal documentation authors: Ayal Zwi Pinkus,
Serge Winitzki, Jitse Niesen. Permission is granted to copy, distribute and/or modify this document under the terms of the
GNU Free Documentation License, Version 1.1 or any later version published by the Free Software Foundation; with no Invariant
Sections, no Front-Cover Texts and no Back-Cover Texts. A copy of the license is included in the section entitled “GNU Free
Documentation License”.

Contents

1 Introduction

2 Programming
/* — Start of comment
*/ —end of comment
// — Beginning of one-line comment
Prog — block of statements
[— beginning of block of statements
1 — end of block of statements
Bodied — define function syntax (bodied function)
Infix — define function syntax (infix operator) . .

Postfix — define function syntax (postfix operator) o

Prefix — define function syntax (prefix operator)
IsBodied — check for function syntax
IsInfix — check for function syntax
IsPostfix — check for function syntax
IsPrefix — check for function syntax
OpPrecedence — get operator precedence
OpLeftPrecedence — get operator precedence . .
OpRightPrecedence — get operator precedence . .
RightAssociative — declare associativity
LeftPrecedence — set operator precedence
RightPrecedence — set operator precedence . . .

RuleBase — define function with a fixed number of arguments oL oL

RuleBaseListed — define function with variable number of arguments

Rule — define a rewriterule
HoldArg — mark argument as not evaluated . . .
Retract — erase rules for a function

UnFence — change local variable scope for a function L.

HoldArgNr — specify argument as not evaluated .
RuleBaseArglist — obtain list of arguments . . .
MacroSet — define rules in functions
MacroClear — define rules in functions
MacroLocal — define rules in functions
MacroRuleBase — define rules in functions
MacroRuleBaseListed — define rules in functions
MacroRule — define rules in functions

Backquoting — macro expansion (LISP-style backquoting) L.

DefMacroRuleBase — define a function as a macro

DefMacroRuleBaseListed — define macro with variable number of arguments

Extralnfo’Set, Extralnfo’Get — annotate objects with additional information

GarbageCollect — do garbage collection on unused memory L.
FindFunction — find the library file where a function is defined

Secure — guard the host OS

© © © © © © © © 0w oI~ ~J~JTOSHSH S S OSSOSOt ot ot Ot Ot Ot ot ot ot ot [N

el el e T e
NN === OO

3 Arbitrary-precision numerical programming

MultiplyNum — optimized numerical multiplication .

CachedConstant — precompute multiple-precision constants

NewtonNum — low-level optimized Newton’s iterations

SumTaylorNum — optimized numerical evaluation of Taylor series
IntPowerNum — optimized computation of integer powers
BinSplitNum — computations of series by the binary splitting method

BinSplitData — computations of series by the binary splitting method
BinSplitFinal — computations of series by the binary splitting method
MathSetExactBits — manipulate precision of floating-point numbers
MathGetExactBits — manipulate precision of floating-point numbers

InNumericMode — determine if currently in numericmode L.

NonN — calculate part in non-numeric mode
IntLog — integer part of logarithm

IntNthRoot — integer part of n-th root
NthRoot — calculate/simplify nth root of an integer .
ContFracList — manipulate continued fractions

ContFracEval — manipulate continued fractions

GuessRational — find optimal rational approximations

NearRational — find optimal rational approximations

BracketRational — find optimal rational approximations

TruncRadian — remainder modulo 27

Builtin’Precision’Set — set the precision
Builtin’Precision’Get — get the current precision

Error reporting
Check — report “hard” errors
TrapError — trap “hard” errors

GetCoreError — get “hard” error string.
Assert — signal “soft” custom error

DumpErrors — simple error handlers

ClearErrors — simple error handlers

IsError — check for custom error
GetError — custom errors handlers

ClearError — custom errors handlers

GetErrorTableau — custom errors handlers

CurrentFile — return current input file.
CurrentLine — return current line number on input .

Built-in (core) functions

MathNot — built-in logical “not”
MathAnd — built-in logical “and”
MathOr — built-in logical “or”
BitAnd — bitwise and operation
BitOr — bitwise or operation
BitXor — bitwise xor operation
Equals — check equality
GreaterThan — comparison predicate
LessThan — comparison predicate
Math... — arbitrary-precision math functions
Fast... — double-precision math functions
ShiftLeft — built-in bitwise shift left operation . . .
ShiftRight — built-in bitwise shift right operation .
IsPromptShown — test for the Yacas prompt option .
GetTime — measure the time taken by an evaluation .

13
13
13
14
14
14
15
15
15
15
15
16
16
16
16
17
17
17
17
17
17
18
18
19

20
20
20
20
20
21
21
21
21
21
21
21
21

23
23
23
23
23
23
23
23
23
23
24
24
24
24
24
25

6 Generic objects
IsGeneric — check for generic object L
GenericTypeName — get type name Lo L L e e e
Array’Create — create array L e e e e e e e e e e e e e e e e
Array’Size — get array Size L
Array’Get — fetch array element
Array’Set — set array element oL L
Array’CreateFromList — convert list toarray L L L
Array’ToList — convert array to list L oL

7 The Yacas test suite
Verify — verifying equivalence of two expressions oL e
TestYacas — verifying equivalence of two expressions
LogicVerify — verifying equivalence of two expressions L oo
LogicTest — verifying equivalence of two expressions L o
KnownFailure — Mark a test as a known failure L o
RoundTo — Round a real-valued result to a set number of digits
VerifyArithmetic — Special purpose arithmetic verifiers L L.
RandVerifyArithmetic — Special purpose arithmetic verifiers L.
VerifyDiv — Special purpose arithmetic verifiers. L

8 Glossary

9 GNU General Public License
9.1 Preamble e
9.2 NO WARRANTY . . . e,

10 GNU Free Documentation License

26
26
26
26
26
26
26
26
27

28
28
28
28
28
29
29
29
29
29

31

34
34
36

37

Chapter 1
Introduction

This document aims to be a reference for functions that
are useful when programming in YACAS, but which are not
necessarily useful when using YACAS. There is another
document that describes the functions that are useful from
a users point of view.

Chapter 2

Programming

This chapter describes functions useful for writing Yacas
scripts.

/* — Start of comment
x/ — end of comment

// — Beginning of one-line comment

(YAcaAs internal)
Calling format:

/* comment */
// comment

Description:

Introduce a comment block in a source file, similar to C++
comments. // makes everything until the end of the line a
comment, while /* and */ may delimit a multi-line comment.

Examples:

at+b; // get result
a + /* add them */ b;

Prog — block of statements
[— beginning of block of statements

] — end of block of statements

(YAcas internal)

Calling format:

Prog(statementl, statement2, ...)
[statementl; statement2; ...]
Parameters:

statementl, statement2 — expressions
Description:

The Prog and the [... 1 construct have the same effect:
they evaluate all arguments in order and return the result of
the last evaluated expression.

Prog(a,b); is the same as typing [a;b;]; and is very useful
for writing out function bodies. The [... 1 construct is a
syntactically nicer version of the Prog call; it is converted into
Prog(...) during the parsing stage.

Bodied — define function syntax
(bodied function)

Infix — define function syntax (infix
operator)

Postfix — define function syntax
(postfix operator)

Prefix — define function syntax
(prefix operator)

(YAcaAs internal)
Calling format:

Bodied("op", precedence)
Infix("op")

Infix("op", precedence)
Postfix("op")
Postfix("op", precedence)
Prefix("op")

Prefix("op", precedence)

Parameters:

"op" — string, the name of a function
precedence — nonnegative integer (evaluated)

Description:

Declares a special syntax for the function to be parsed as a
bodied, infix, postfix, or prefix operator.

“Bodied” functions have all arguments except the first one
inside parentheses and the last argument outside, for example:

For(pre, condition, post) statement;

Here the function For has 4 arguments and the last argument
is placed outside the parentheses. The precedence of a "bod-
ied” function refers to how tightly the last argument is bound
to the parentheses. This makes a difference when the last argu-
ment contains other operators. For example, when taking the
derivative

D(x) Sin(x)+Cos(x)
both Sin and Cos are under the derivative because the bodied
function D binds less tightly than the infix operator ”+”.

“Infix” functions must have two arguments and are syntacti-
cally placed between their arguments. Names of infix functions

can be arbitrary, although for reasons of readability they are
usually made of non-alphabetic characters.

“Prefix” functions must have one argument and are syntac-
tically placed before their argument. “Postfix” functions must
have one argument and are syntactically placed after their ar-
gument.

Function name can be any string but meaningful usage and
readability would require it to be either made up entirely of
letters or entirely of non-letter characters (such as “+7, “” etc.).
Precedence is optional (will be set to 0 by default).

Examples:
In> YY x := x+1;
CommandLine (1) : Error parsing expression

In> Prefix("YY", 2)
Out> True;
In> YY x :=
Out> True;
In> YY YY 2%3
Qut> 12;

In> Infix("##", 5)
Out> True;

In> a ## b ## c
Out> ait#tbitiic;

x+1;

Note that, due to a current parser limitation, a function atom
that is declared prefix cannot be used by itself as an argument.

In> YY

CommandLine(1) : Error parsing expression

See also: IsBodied, OpPrecedence

IsBodied — check for function syn-
tax

IsInfix — check for function syntax

IsPostfix — check for function syn-
tax

IsPrefix — check for function syn-
tax
(YAcas internal)

Calling format:

IsBodied("op")

IsInfix("op")

IsPostfix("op")

IsPrefix("op")
Parameters:
"op" — string, the name of a function
Description:
Check whether the function with given name "op" has been

declared as a “bodied”, infix, postfix, or prefix operator, and
return True or False.

Examples:

In> IsInfix("+");

Out> True;

In> IsBodied("While");
Out> True;

In> IsBodied("Sin");
Out> False;

In> IsPostfix("!");
Out> True;

See also: Bodied, OpPrecedence

OpPrecedence — get operator prece-
dence

OpLeftPrecedence — get operator
precedence

OpRightPrecedence — get operator
precedence

(YAcaAs internal)
Calling format:

OpPrecedence("op")
OpLeftPrecedence("op")
OpRightPrecedence("op")

Parameters:
"op" — string, the name of a function
Description:

Returns the precedence of the function named “op” which
should have been declared as a bodied function or an infix, post-
fix, or prefix operator. Generates an error message if the string
str does not represent a type of function that can have prece-
dence.

For infix operators, right precedence can differ from left prece-
dence. Bodied functions and prefix operators cannot have left
precedence, while postfix operators cannot have right prece-
dence; for these operators, there is only one value of precedence.

Examples:
In> OpPrecedence("+")
Out> 6;

In> OpLeftPrecedence("!")
Out> 0;

RightAssociative — declare associa-
tivity
(YAcCAs internal)
Calling format:
RightAssociative("op")

Parameters:

"op" — string, the name of a function
Description:

This makes the operator right-associative. For example:
RightAssociative ("*")

would make multiplication right-associative. Take care not to
abuse this function, because the reverse, making an infix opera-
tor left-associative, is not implemented. (All infix operators are
by default left-associative until they are declared to be right-
associative.)

See also: OpPrecedence

LeftPrecedence — set operator
precedence

RightPrecedence — set operator
precedence

(YAcCAs internal)
Calling format:

LeftPrecedence("op",precedence)
RightPrecedence("op",precedence)

Parameters:

"op" — string, the name of a function
precedence — nonnegative integer

Description:

"op" should be an infix operator. This function call tells the
infix expression printer to bracket the left or right hand side of
the expression if its precedence is larger than precedence.

This functionality was required in order to display expressions
like a-(b-c) correctly. Thus, a+b+c is the same as a+(b+c), but
a-(b-c) is not the same as a-b-c.

Note that the left and right precedence of an infix operator
does not affect the way Yacas interprets expressions typed by
the user. You cannot make Yacas parse a-b-c as a-(b-c) unless
you declare the operator ”-” to be right-associative.

See also: OpPrecedence, OpLeftPrecedence,

OpRightPrecedence, RightAssociative

RuleBase — define function with a
fixed number of arguments

(YAcas internal)
Calling format:
RuleBase (name,params)
Parameters:

name — string, name of function
params — list of arguments to function

Description:

Define a new rules table entry for a function “name”, with
params as the parameter list. Name can be either a string or
simple atom.

In the context of the transformation rule declaration facilities
this is a useful function in that it allows the stating of argument
names that can he used with HoldArg.

Functions can be overloaded: the same function can be de-
fined with different number of arguments.

See also: MacroRuleBase, RuleBaseListed,
MacroRuleBaselListed, HoldArg, Retract

define function

RuleBaseListed
with variable number of arguments

(YACAS internal)
Calling format:
RuleBaselListed("name", params)
Parameters:

"name" — string, name of function
params — list of arguments to function

Description:

The command RuleBaseListed defines a new function. It essen-
tially works the same way as RuleBase, except that it declares
a new function with a variable number of arguments. The list
of parameters params determines the smallest number of argu-
ments that the new function will accept. If the number of argu-
ments passed to the new function is larger than the number of
parameters in params, then the last argument actually passed
to the new function will be a list containing all the remaining
arguments.

A function defined using RuleBaseListed will appear to have
the arity equal to the number of parameters in the param list,
and it can accept any number of arguments greater or equal
than that. As a consequence, it will be impossible to define a
new function with the same name and with a greater arity.

The function body will know that the function is passed more
arguments than the length of the param list, because the last ar-
gument will then be a list. The rest then works like a RuleBase-
defined function with a fixed number of arguments. Transfor-
mation rules can be defined for the new function as usual.

Examples:

The definitions

RuleBaseListed("f",{a,b,c})
10 # f(_a,_b,{_c,_d}) <--
Echo({"four args",a,b,c,d});
20 # f(_a,_b,c_IsList) <--
Echo({"more than four args",a,b,c});
30 # f(_a,_b,_c) <-- Echo({"three args",a,b,c});

give the following interaction:

In> f(A)

Out> £(4);

In> £(A,B)

Out> f(A,B);

In> £(A,B,C)
three args A B C

Out> True;

In> f(A,B,C,D)

four args A B CD

Out> True;

In> f(A,B,C,D,E)

more than four args A B {C,D,E}

Out> True;

In> f(A,B,C,D,E,E)

more than four args A B {C,D,E,E}

Out> True;

The function £ now appears to occupy all arities greater than
3

In> RuleBase("f", {x,y,z,t});

CommandLine (1) : Rule base with this arity
already defined

See also: RuleBase, Retract, Echo

Rule — define a rewrite rule

(YAcAs internal)
Calling format:

Rule("operator", arity,
precedence, predicate) body

Parameters:

"operator" — string, name of function
arity, precedence — integers
predicate — function returning boolean
body — expression, body of rule

Description:

Define a rule for the function “operator” with “arity”, “prece-
dence”, “predicate” and “body”. The “precedence” goes from
low to high: rules with low precedence will be applied first.

The arity for a rules database equals the number of argu-
ments. Different rules data bases can be built for functions
with the same name but with a different number of arguments.

Rules with a low precedence value will be tried before rules
with a high value, so a rule with precedence 0 will be tried before
a rule with precedence 1.

HoldArg — mark argument as not
evaluated

(YAcCAs internal)
Calling format:
HoldArg("operator",parameter)
Parameters:

"operator" — string, name of a function
parameter — atom, symbolic name of parameter

Description:

Specify that parameter should not be evaluated before used.
This will be declared for all arities of “operator”, at the moment
this function is called, so it is best called after all RuleBase calls
for this operator. “operator” can be a string or atom specifying
the function name.

The parameter must be an atom from the list of symbolic
arguments used when calling RuleBase.

See also: RuleBase, HoldArgNr, RuleBaseArgList

Retract — erase rules for a function
(YAcas internal)
Calling format:
Retract ("function",arity)
Parameters:

"function" — string, name of function
arity — positive integer

Description:

Remove a rulebase for the function named "function" with the
specific arity, if it exists at all. This will make Yacas forget all
rules defined for a given function. Rules for functions with the
same name but different arities are not affected.

Assignment := of a function does this to the function being
(re)defined.

See also: RuleBaseArglList, RuleBase, :=

UnFence change local variable
scope for a function
(YAcAs internal)
Calling format:
UnFence ("operator",arity)
Parameters:

"operator" — string, name of function
arity — positive integers

Description:

When applied to a user function, the bodies defined for the
rules for “operator” with given arity can see the local variables
from the calling function. This is useful for defining macro-like
procedures (looping and such).

The standard library functions For and ForEach use UnFence.

HoldArgNr — specify argument as not
evaluated
(standard library)
Calling format:
HoldArgNr("function", arity, argNum)
Parameters:

"function" — string, function name
arity, argNum — positive integers

Description:

Declares the argument numbered argNum of the function named
"function" with specified arity to be unevaluated ("held”).
Useful if you don’t know symbolic names of parameters, for
instance, when the function was not declared using an explicit
RuleBase call. Otherwise you could use HoldArg.

See also: HoldArg, RuleBase

RuleBaseArglist — obtain list of ar-
guments

(YAcaAs internal)
Calling format:
RuleBaseArgList ("operator", arity)
Parameters:

"operator" — string, name of function
arity — integer

Description:

Returns a list of atoms, symbolic parameters specified in the
RuleBase call for the function named "operator" with the spe-
cific arity.

See also: RuleBase, HoldArgNr, HoldArg

MacroSet — define rules in functions
MacroClear — define rules in func-
tions

MacroLocal — define rules in func-
tions

MacroRuleBase — define rules in
functions

MacroRuleBaseListed — define rules

in functions

MacroRule — define rules in functions

(YAcas internal)
Description:

These functions have the same effect as their non-macro coun-
terparts, except that their arguments are evaluated before the
required action is performed. This is useful in macro-like pro-
cedures or in functions that need to define new rules based on
parameters.

Make sure that the arguments of Macro... commands evaluate
to expressions that would normally be used in the non-macro
versions!

See also: Set, Clear, Local, RuleBase, Rule, Backquoting

Backquoting macro expansion
(LISP-style backquoting)

(YAcASs internal)
Calling format:
¢ (expression)
Parameters:

expression — expression containing ”@var” combinations to
substitute the value of variable ”var”

Description:

Backquoting is a macro substitution mechanism. A backquoted
expression is evaluated in two stages: first, variables prefixed
by @ are evaluated inside an expression, and second, the new
expression is evaluated.

To invoke this functionality, a backquote ¢ needs to be placed
in front of an expression. Parentheses around the expression are
needed because the backquote binds tighter than other opera-
tors.

The expression should contain some variables (assigned
atoms) with the special prefix operator @ Variables prefixed
by @ will be evaluated even if they are inside function argu-
ments that are normally not evaluated (e.g. functions declared
with HoldArg). If the @var pair is in place of a function name,
e.g. “@f(x)”, then at the first stage of evaluation the function
name itself is replaced, not the return value of the function (see
example); so at the second stage of evaluation, a new function
may be called.

One way to view backquoting is to view it as a parametric
expression generator. @var pairs get substituted with the value
of the variable var even in contexts where nothing would be
evaluated. This effect can be also achieved using UnList and
Hold but the resulting code is much more difficult to read and
maintain.

This operation is relatively slow since a new expression is built
before it is evaluated, but nonetheless backquoting is a powerful
mechanism that sometimes allows to greatly simplify code.

[

Examples:

This example defines a function that automatically evaluates to
a number as soon as the argument is a number (a lot of functions
do this only when inside a N(...) section).

In> Decl(f1,f2) := \

In> ‘(@f1(x_IsNumber) <-- N(@f2(x)));
Out> True;

In> Decl(nSin,Sin)

Out> True;

In> Sin(1)

Qut> Sin(1);

In> nSin(1)

Out> 0.8414709848;

This example assigns the expression func(value) to variable
var. Normally the first argument of Set would be unevaluated.

In> SetF(var,func,value) := \

In> ‘(Set(@var,@func(@value)));
Out> True;

In> SetF(a,Sin,x)

Out> True;

In> a

Out> Sin(x);

See also: MacroSet, MacroLocal, MacroRuleBase, Hold,
HoldArg, DefMacroRuleBase

DefMacroRuleBase — define a func-
tion as a macro

(standard library)
Calling format:
DefMacroRuleBase (name,params)
Parameters:

name — string, name of a function
params — list of arguments

Description:

DefMacroRuleBase is similar to RuleBase, with the difference
that it declares a macro, instead of a function. After this call,
rules can be defined for the function “name”, but their interpre-
tation will be different.

With the usual functions, the evaluation model is that of the
ii;applicative-order model of substitutionj/i;, meaning that first
the arguments are evaluated, and then the function is applied
to the result of evaluating these arguments. The function is
entered, and the code inside the function can not access local
variables outside of its own local variables.

With macros, the evaluation model is that of the normal-
order model of substitution, meaning that all occurrences of vari-
ables in an expression are first substituted into the body of the
macro, and only then is the resulting expression evaluated jijin
its calling environment;/i;. This is important, because then in
principle a macro body can access the local variables from the
calling environment, whereas functions can not do that.

As an example, suppose there is a function square, which
squares its argument, and a function add, which adds its argu-
ments. Suppose the definitions of these functions are:

add(x,y) <-- x+y;
and
square(x) <-- x*x;

In applicative-order mode (the usual way functions are evalu-
ated), in the following expression

add(square(2),square(3))

first the arguments to add get evaluated. So, first square(2)
is evaluated. To evaluate this, first 2 is evaluated, but this
evaluates to itself. Then the square function is applied to it,
2x2 which returns 4. The same is done for square(3), resulting
in 9. Only then, after evaluating these two arguments, add is
applied to them, which is equivalent to

add(4,9)
resulting in calling 4+9, which in turn results in 13.

In contrast, when add is a macro, the arguments to add are
first expanded. So

add (square(2),square(3))
first expands to
square(2) + square(3)

and then this expression is evaluated, as if the user had written
it directly. In other words, square(2) is not evaluated before
the macro has been fully expanded.

Macros are useful for customizing syntax, and compilers can
potentially greatly optimize macros, as they can be inlined in
the calling environment, and optimized accordingly.

10

There are disadvantages, however. In interpreted mode,
macros are slower, as the requirement for substitution means
that a new expression to be evaluated has to be created on the
fly. Also, when one of the parameters to the macro occur more
than once in the body of the macro, it is evaluated multiple
times.

When defining transformation rules for macros, the variables
to be substituted need to be preceded by the @ operator, sim-
ilar to the back-quoting mechanism. Apart from that, the two
are similar, and all transformation rules can also be applied to
macros.

Macros can co-exist with functions with the same name but
different arity. For instance, one can have a function foo(a,b)
with two arguments, and a macro foo(a,b,c) with three argu-
ments.

Example:

The following example defines a function myfor, and shows one
use, referencing a variable a from the calling environment.

In> DefMacroRuleBase("myfor",{init,pred,inc,body})
Out> True;

In> myfor(_init,_pred,_inc,_body)<--[@init;While(@pred) [@b«

Out> True;
In> a:=10
Out> 10;
In> myfor(i:=1,i<10,i++,Echo(a*i))
10

20

30

40

50

60

70

80

90

Out> True;
In> i
Out> 10;

See also: RuleBase, Backquoting, DefMacroRuleBaseListed

DefMacroRuleBaselListed define
macro with variable number of ar-
guments
(YAcaAs internal)
Calling format:
DefMacroRuleBaseListed("name", params)
Parameters:

"name" — string, name of function
params — list of arguments to function

Description:

This does the same as DefMacroRuleBase (define a macro),
but with a wvariable number of arguments, similar to
RuleBaseListed.

See also: RuleBase, RuleBaselListed, Backquoting,
DefMacroRuleBase

ExtraInfo’Set, Extralnfo’Get — an-
notate objects with additional infor-
mation

(YAcas internal)
Calling format:

ExtraInfo’Set (expr,tag)
ExtraInfo’Get (expr)

Parameters:

expr — any expression
tag — tag information (any other expression)

Description:

Sometimes it is useful to be able to add extra tag information to
“annotate” objects or to label them as having certain “proper-
ties”. The functions ExtraInfo’Set and ExtraInfo’Get enable
this.

The function ExtraInfo’Set returns the tagged expression,
leaving the original expression alone. This means there is a com-
mon pitfall: be sure to assign the returned value to a variable,
or the tagged expression is lost when the temporary object is
destroyed.

The original expression is left unmodified, and the tagged
expression returned, in order to keep the atomic objects small.
To tag an object, a new type of object is created from the old
object, with one added property (the tag). The tag can be any
expression whatsoever.

The function ExtraInfo’Get (x) retrieves this tag expression
from an object x. If an object has no tag, it looks the same as
if it had a tag with value False.

No part of the Yacas core uses tags in a way that is visible
to the outside world, so for specific purposes a programmer can
devise a format to use for tag information. Association lists
(hashes) are a natural fit for this, although it is not required
and a tag can be any object (except the atom False because
it is indistinguishable from having no tag information). Using
association lists is highly advised since it is most likely to be
the format used by other parts of the library, and one needs to
avoid clashes with other library code. Typically, an object will
either have no tag or a tag which is an associative list (perhaps
empty). A script that uses tagged objects will check whether
an object has a tag and if so, will add or modify certain entries
of the association list, preserving any other tag information.

Note that FlatCopy currently does not copy the tag informa-
tion (see examples).

Examples:
In> a:=2%b
Out> 2xb;
In> a:=ExtraInfo’Set(a,{{"type","integer"}})
Out> 2x*b;
In> a
Out> 2x%b;

In> Extralnfo’Get(a)

Out> {{"type","integer"}};
In> Extralnfo’Get(a) ["type"]
Out> "integer";

In> c:=a

Out> 2x%Db;

In> Extralnfo’Get(c)

11

Out> {{"type","integer"}};
In> c

Out> 2x%b;

In> d:=FlatCopy(a);

Qut> 2x*b;

In> ExtraInfo’Get(d)

Out> False;

See also: Assoc, :=

GarbageCollect — do garbage collec-
tion on unused memory

(YAcas internal)
Calling format:
GarbageCollect ()
Description:

GarbageCollect garbage-collects unused memory. The Yacas
system uses a reference counting system for most objects, so
this call is usually not necessary.

Reference counting refers to bookkeeping where in each ob-
ject a counter is held, keeping track of the number of parts in
the system using that object. When this count drops to zero,
the object is automatically removed. Reference counting is not
the fastest way of doing garbage collection, but it can be imple-
mented in a very clean way with very little code.

Among the most important objects that are not reference
counted are the strings. GarbageCollect collects these and dis-
poses of them when they are not used any more.

GarbageCollect is useful when doing a lot of text processing,
to clean up the text buffers. It is not highly needed, but it keeps
memory use low.

FindFunction — find the library file
where a function is defined

(YAcCAS internal)
Calling format:
FindFunction(function)
Parameters:
function — string, the name of a function
Description:

This function is useful for quickly finding the file where a stan-
dard library function is defined. It is likely to only be useful
for developers. The function FindFunction scans the .def files
that were loaded at start-up. This means that functions that
are not listed in .def files will not be found with FindFunction.

Examples:

In> FindFunction("Sum")

Out> "sums.rep/code.ys";

In> FindFunction("Integrate")
Out> "integrate.rep/code.ys";

See also: Vi

Secure — guard the host OS
(YAcas internal)
Calling format:
Secure (body)
Parameters:
body — expression
Description:
Secure evaluates body in a ”safe” environment, where files can-
not be opened and system calls are not allowed. This can help
protect the system when e.g. a script is sent over the Internet to

be evaluated on a remote computer, which is potentially unsafe.

See also: SystemCall

12

Chapter 3

Arbitrary-precision numerical

programming

This chapter contains functions that help programming nu-
merical calculations with arbitrary precision.

MultiplyNum — optimized numerical
multiplication

(standard library)
Calling format:

MultiplyNum(x,y)
MultiplyNum(x,y,z,...)
MultiplyNum({x,y,z,...})

Parameters:
X, y, z — integer, rational or floating-point numbers to multiply
Description:

The function MultiplyNum is used to speed up multiplication
of floating-point numbers with rational numbers. Suppose we
need to compute Zx where p, ¢ are integers and x is a floating-
point number. At high precision, it is faster to multiply x by an
integer p and divide by an integer g than to compute % to high
precision and then multiply by . The function MultiplyNum
performs this optimization.

The function accepts any number of arguments (not less than
two) or a list of numbers. The result is always a floating-point
number (even if InNumericMode () returns False).

See also: MathMultiply

CachedConstant precompute
multiple-precision constants
(standard library)
Calling format:
CachedConstant (cache, Cname, Cfunc)
Parameters:
cache — atom, name of the cache

Cname — atom, name of the constant
Cfunc — expression that evaluates the constant

Description:

This function is used to create precomputed multiple-precision
values of constants. Caching these values will save time if they
are frequently used.

The call to CachedConstant defines a new function named
Cname () that returns the value of the constant at given precision.
If the precision is increased, the value will be recalculated as
necessary, otherwise calling Cname () will take very little time.

The parameter Cfunc must be an expression that can be eval-
uated and returns the value of the desired constant at the cur-
rent precision. (Most arbitrary-precision mathematical func-
tions do this by default.)

The associative list cache contains elements of the form
{Cname, prec, value}, as illustrated in the example. If this
list does not exist, it will be created.

This mechanism is currently used by N() to precom-
pute the values of m and v (and the golden ratio through
GoldenRatio, and Catalan). The name of the cache for N() is
Cache0fConstantsN. The code in the function N() assigns un-
evaluated calls to Internal’Pi() and Internal’gamma() to the
atoms Pi and gamma and declares them to be lazy global vari-
ables through SetGloballLazyVariable (with equivalent func-
tions assigned to other constants that are added to the list of
cached constants).

The result is that the constants will be recalculated only when
they are used in the expression under N(). In other words, the
code in N() does the equivalent of

SetGlobalLazyVariable (mypi,Hold(Internal’Pi()));

SetGlobalLazyVariable (mygamma,Hold(Internal’gamma()));

After this, evaluating an expression such as 1/2+gamma
will call the function Internal’gamma() but not the function
Internal’Pi().

Example:

In> CachedConstant(my’cache, Ln2, Internal’LnNum(2))

Out> True;

In> Internal’Ln2()

Out> 0.6931471806;

In> V(N(Internal’Ln2(),20))

CachedConstant: Info: constant Ln2 is being
recalculated at precision 20

Out> 0.69314718055994530942;

In> my’cache

Out> {{"Ln2",20,0.69314718055994530942}};

See also: N, Builtin’Precision’Set, Pi, GoldenRatio,
Catalan, gamma

NewtonNum low-level optimized
Newton’s iterations

(standard library)
Calling format:

NewtonNum(func, x0, precO, order)
NewtonNum(func, x0, precO)
NewtonNum (func, x0)

Parameters:

func — a function specifying the iteration sequence
x0 — initial value (must be close enough to the root)
precO — initial precision (at least 4, default 5)
order — convergence order (typically 2 or 3, default 2)

Description:

This function is an optimized interface for computing Newton’s
iteration sequences for numerical solution of equations in arbi-
trary precision.

NewtonNum will iterate the given function starting from the
initial value, until the sequence converges within current preci-
sion. Initially, up to 5 iterations at the initial precision prec0 is
performed (the low precision is set for speed). The initial value
x0 must be close enough to the root so that the initial iterations
converge. If the sequence does not produce even a single correct
digit of the root after these initial iterations, an error message
is printed. The default value of the initial precision is 5.

The order parameter should give the convergence order of
the scheme. Normally, Newton iteration converges quadratically
(so the default value is order=2) but some schemes converge
faster and you can speed up this function by specifying the
correct order. (Caution: if you give order=3 but the sequence
is actually quadratic, the result will be silently incorrect. It is
safe to use order=2.)

Example:

In> Builtin’Precision’Set (20)

Out> True;

In> NewtonNum({{x}, x+Sin(x)}, 3, 5, 3)
Out> 3.14159265358979323846;

See also: Newton

SumTaylorNum — optimized numerical
evaluation of Taylor series

(standard library)
Calling format:

SumTaylorNum(x, NthTerm, order)
SumTaylorNum(x, NthTerm, TermFactor, order)
SumTaylorNum(x, ZerothTerm, TermFactor, order)

Parameters:

NthTerm — a function specifying n-th coefficient of the series
ZerothTerm — value of the 0-th coefficient of the series
x — number, value of the expansion variable
TermFactor — a function specifying the ratio of n-th term to
the previous one
order — power of x in the last term

14

Description:

SumTaylorNum computes a Taylor series E::o arz® numerically.
This function allows very efficient computations of functions
given by Taylor series, although some tweaking of the parame-
ters is required for good results.

The coefficients ay, of the Taylor series are given as functions
of one integer variable (k). It is convenient to pass them to
SumTaylorNum as closures. For example, if a function a(k) is
defined, then

SumTaylorNum(x, {{k}, a(k)}, n)

computes the series > ' a (k) z".

Often a simple relation between successive coefficients ax_1,
ay, of the series is available; usually they are related by a rational
factor. In this case, the second form of SumTaylorNum should
be used because it will compute the series faster. The function
TermFactor applied to an integer £ > 1 must return the ratio
ak/ak,L (If possible, the function TermFactor should return a
rational number and not a floating-point number.) The func-
tion NthTerm may also be given, but the current implementation
only calls NthTerm(0) and obtains all other coefficients by using
TermFactor. Instead of the function NthTerm, a number giving
the 0-th term can be given.

The algorithm is described elsewhere in the documentation.
The number of terms order+1 must be specified and a suffi-
ciently high precision must be preset in advance to achieve the
desired accuracy. (The function SumTaylorNum does not change
the current precision.)

Examples:

To compute 20 digits of exp (1) using the Taylor series, one needs
21 digits of working precision and 21 terms of the series.

In> Builtin’Precision’Set(21)

Out> True;

In> SumTaylorNum(1, {{k},1/k!}, 21)

Out> 2.718281828459045235351 ;

In> SumTaylorNum(1l, 1, {{k},1/k}, 21)

Out> 2.71828182845904523535;

In> SumTaylorNum(1, {{k},1/k!}, {{k},1/k}, 21)
Out> 2.71828182845904523535;

In> RoundTo (N(Ln(%)),20)

Out> 1;

See also: Taylor

IntPowerNum — optimized computa-
tion of integer powers

(standard library)
Calling format:
IntPowerNum(x, n, mult, unity)
Parameters:
x — a number or an expression
n — a non-negative integer (power to raise x to)
mult — a function that performs one multiplication

unity — value of the unity with respect to that multiplication

Description:

IntPowerNum computes the power z” using the fast binary al-
gorithm. It can compute integer powers with n > 0 in any ring
where multiplication with unity is defined. The multiplication
function and the unity element must be specified. The number
of multiplications is no more than 211'1“3

Mathematically, this function

is a generalization of
MathPower to rings other than that of real numbers.

In the current implementation, the unity argument is only
used when the given power n is zero.

Examples:

For efficient numerical calculations, the MathMultiply function
can be passed:

In> IntPowerNum(3, 3, MathMultiply,1)
OQut> 27;

Otherwise, the usual * operator suffices:

In> IntPowerNum(3+4*I, 3, *,1)

Out> Complex(-117,44);

In> IntPowerNum(HilbertMatrix(2), 4, *,
Identity(2))

Out> {{289/144,29/27},{29/27,745/1296}%};

Compute 3% mod 7:

In> IntPowerNum(3,100,{{x,y},Mod(x*y,7)},1)
Out> 4;

See also: MultiplyNum, MathPower, MatrixPower

BinSplitNum — computations of se-
ries by the binary splitting method

BinSplitData — computations of se-
ries by the binary splitting method

BinSplitFinal — computations of se-
ries by the binary splitting method

(standard library)
Calling format:

BinSplitNum(nl, n2, a, b, c, d)
BinSplitData(nl,n2, a, b, c, d)
BinSplitFinal({P,Q,B,T})

Parameters:

nil, n2 — integers, initial and final indices for summation
a, b, c, d — functions of one argument, coefficients of the series
P, Q, B, T — numbers, intermediate data as returned by
BinSplitData

Description:

The binary splitting method is an efficient way to evaluate many

series when fast multiplication is available and when the series

contains only rational numbers. The function BinSplitNum eval-
uates a series of the form

n2

a (k) p(0)

S(n1,n2) = —_— ...

g; b(k) ¢(0) q(

p(k

~

~

15

Most series for elementary and special functions at rational
points are of this form when the functions a (k), b(k), p(k),
q (k) are chosen appropriately.

The last four arguments of BinSplitNum are functions of one
argument that give the coefficients a (k), b (k), p(k), ¢ (k). In
most cases these will be short integers that are simple to de-
termine. The binary splitting method will work also for non-
integer coefficients, but the calculation will take much longer in
that case.

Note: the binary splitting method outperforms the straight-
forward summation only if the multiplication of integers is faster
than quadratic in the number of digits. See the algorithm docu-
mentation, in The Yacas book of algorithms, Chapter 3, Section
14 for more information.

The two other functions are low-level functions that allow a
finer control over the calculation. The use of the low-level rou-
tines allows checkpointing or parallelization of a binary splitting
calculation.

The binary splitting method recursively reduces the calcu-
lation of S (n1,n2) to the same calculation for the two halves
of the interval [n1, n2]. The intermediate results of a binary
splitting calculation are returned by BinSplitData and consist
of four integers P, Q, B, T. These four integers are converted
into the final answer S by the routine BinSplitFinal using the

relation
T

Examples:

Compute the series for e = exp (1) using binary splitting. (We
start from n = 1 to simplify the coefficient functions.)
In> Builtin’Precision’Set (21)
Out> True;
In> BinSplitNum(1,21, {{k},1},
{{x}, 1}, {{x}, 1},{{k}, kD
Out> 1.718281828459045235359;
In> N(Exp(1)-1)
Out> 1.71828182845904523536;
In> BinSplitData(1,21, {{k},1},
k3,13, {{k}, 13, {{k}, kD
Out> {1,51090942171709440000,1,
87788637532500240022};
In> BinSplitFinal (%)
Out> 1.718281828459045235359;

See also: SumTaylorNum

MathSetExactBits — manipulate pre-
cision of floating-point numbers

MathGetExactBits — manipulate pre-
cision of floating-point numbers

(YAcCAS internal)
Calling format:

MathGetExactBits(x)
MathSetExactBits(x,bits)

Parameters:

x — an expression evaluating to a floating-point number
bits — integer, number of bits

Description:

Each floating-point number in Yacas has an internal preci-
sion counter that stores the number of exact bits in the man-
tissa. The number of exact bits is automatically updated af-
ter each arithmetic operation to reflect the gain or loss of
precision due to round-off. The functions MathGetExactBits,
MathSetExactBits allow to query or set the precision flags of
individual number objects.

MathGetExactBits(x) returns an integer number n such
that x represents a real number in the interval [z (1 . 27"),
x (1 + 27")] if £ # 0 and in the interval [-277", 27 "] if x = 0.
The integer n is always nonnegative unless x is zero (a ”floating
zero”). A floating zero can have a negative value of the number
n of exact bits.

These functions are only meaningful for floating-point num-
bers. (All integers are always exact.) For integer x, the function
MathGetExactBits returns the bit count of x and the function
MathSetExactBits returns the unmodified integer x.

Examples:

The default precision of 10 decimals corresponds to 33 bits:

In> MathGetExactBits(1000.123)
Out> 33;

In> x:=MathSetExactBits(10., 20)
Out> 10.;

In> MathGetExactBits(x)

Out> 20;

Prepare a “floating zero” representing an interval [-4, 4]:

In> x:=MathSetExactBits(0., -2)
Out> 0.;

In> x=0

Out> True;

See also: Builtin’Precision’Set, Builtin’Precision’Get

InNumericMode — determine if cur-
rently in numeric mode

NonN calculate part in non-

numeric mode
(standard library)
Calling format:

NonN (expr)
InNumericMode ()

Parameters:

expr — expression to evaluate
prec — integer, precision to use

Description:

When in numeric mode, InNumericMode () will return True, else
it will return False. YACAS is in numeric mode when evaluating
an expression with the function N. Thus when calling N(expr),
InNumericMode () will return True while expr is being evaluated.

InNumericMode () would typically be used to define a trans-
formation rule that defines how to get a numeric approximation
of some expression. One could define a transformation rule

16

f(_x)_InNumericMode() <- [...

InNumericMode() usually returns False, so transformation
rules that check for this predicate are usually left alone.

When in numeric mode, NonN can be called to switch back to
non-numeric mode temporarily.

NonN is a macro. Its argument expr will only be evaluated
after the numeric mode has been set appropriately.

Examples:
In> InNumericMode ()
Out> False
In> N(InNumericMode())
Out> True
In> N(NonN(InNumericMode()))
Out> False
See also: N, Builtin’Precision’Set,
Builtin’Precision’Get, Pi, CachedConstant
IntLog — integer part of logarithm
(standard library)
Calling format:
IntLog(n, base)
Parameters:
n, base — positive integers
Description:
IntLog calculates the integer part of the logarithm of n in base

base. The algorithm uses only integer math and may be faster

than computing
Inn

In base
with multiple precision floating-point math and rounding off to
get the integer part.
This function can also be used to quickly count the digits in
a given number.

Examples:

Count the number of bits:

In> IntLog(257°8, 2)
Out> 64;

Count the number of decimal digits:

In> IntLog(321°321, 10)
Out> 804;

See also: IntNthRoot, Div, Mod, Ln

IntNthRoot — integer part of n-th
root

(standard library)
Calling format:

IntNthRoot (x, n)

some code to get a numeric aj

Parameters:
X, n — positive integers
Description:

IntNthRoot calculates the integer part of the n-th root of .
The algorithm uses only integer math and may be faster than
computing {/z with floating-point and rounding.

This function is used to test numbers for prime powers.

Example:

In> IntNthRoot(65537°111, 37)
Out> 281487861809153;

See also: IntLog, MathPower, IsPrimePower

NthRoot — calculate/simplify nth
root of an integer

(standard library)
Calling format:
NthRoot (m,n)
Parameters:

m — a non-negative integer (m > 0)
n — a positive integer greater than 1 (n > 1)

Description:

NthRoot (m,n) calculates the integer part of the n-th root {¥/m
and returns a list {f,r}. £ and r are both positive integers that
satisfy f"r=m. In other words, f is the largest integer such
that m divides f™ and r is the remaining factor.

For large m and small n NthRoot may work quite slowly. Ev-
ery result {f,r} for given m, n is saved in a lookup table, thus
subsequent calls to NthRoot with the same values m, n will be
executed quite fast.

Example:

In> NthRoot(12,2)

Out> {2,3};

In> NthRoot(81,3)

Out> {3,3};

In> NthRoot (3255552,2)
OQut> {144,157};

In> NthRoot (3255552,3)
Out> {12,1884};

See also: IntNthRoot, Factors, MathPower

ContFracList — manipulate contin-
ued fractions

ContFracEval — manipulate contin-
ued fractions

(standard library)

Calling format:

ContFracList (frac)
ContFracList (frac, depth)
ContFracEval(list)
ContFracEval(list, rest)

Parameters:

frac — a number to be expanded
depth — desired number of terms
list — a list of coefficients
rest — expression to put at the end of the continued fraction

Description:

The function ContFracList computes terms of the continued
fraction representation of a rational number frac. It returns a
list of terms of length depth. If depth is not specified, it returns
all terms.

The function ContFracEval converts a list of coefficients into
a continued fraction expression. The optional parameter rest
specifies the symbol to put at the end of the expansion. If it is
not given, the result is the same as if rest=0.

Examples:

In> A:=ContFracList(33/7 + 0.000001)

OQut> {4,1,2,1,1,20409,2,1,13,2,1,4,1,1,3,3,2};
In> ContFracEval(Take(A, 5))

Out> 33/7;

In> ContFracEval(Take(A,3), remainder)

Out> 1/(1/(remainder+2)+1)+4;

See also: ContFrac, GuessRational

GuessRational — find optimal ratio-
nal approximations

NearRational — find optimal rational
approximations

BracketRational — find optimal ra-
tional approximations

(standard library)
Calling format:

GuessRational (x)
GuessRational(x, digits)
NearRational(x)
NearRational(x, digits)
BracketRational(x, eps)

Parameters:
x — a number to be approximated (must be already evaluated
to floating-point)

digits — desired number of decimal digits (integer)

eps — desired precision

Description:

17

The functions GuessRational(x) and NearRational(x) at-
tempt to find ”optimal” rational approximations to a given value
x. The approximations are ”optimal” in the sense of having
smallest numerators and denominators among all rational num-
bers close to x. This is done by computing a continued fraction
representation of x and truncating it at a suitably chosen term.
Both functions return a rational number which is an approxi-
mation of x.

Unlike the function Rationalize() which converts floating-
point numbers to rationals without loss of precision, the func-
tions GuessRational() and NearRational() are intended to
find the best rational that is approximately equal to a given
value.

The function GuessRational () is useful if you have obtained
a floating-point representation of a rational number and you
know approximately how many digits its exact representation
should contain. This function takes an optional second param-
eter digits which limits the number of decimal digits in the
denominator of the resulting rational number. If this parame-
ter is not given, it defaults to half the current precision. This
function truncates the continuous fraction expansion when it
encounters an unusually large value (see example). This pro-
cedure does not always give the “correct” rational number; a
rule of thumb is that the floating-point number should have at
least as many digits as the combined number of digits in the
numerator and the denominator of the correct rational number.

The function NearRational(x) is useful if one needs to ap-
proximate a given value, i.e. to find an “optimal” rational num-
ber that lies in a certain small interval around a certain value x.
This function takes an optional second parameter digits which
has slightly different meaning: it specifies the number of digits
of precision of the approximation; in other words, the difference
between x and the resulting rational number should be at most
one digit of that precision. The parameter digits also defaults
to half of the current precision.

The function BracketRational (x,eps) can be used to find
approximations with a given relative precision from above and
from below. This function returns a list of two rational num-
bers {r1,r2} such that r1 < x < 72 and |r2 —ri| < |zeps|.
The argument x must be already evaluated to enough precision
so that this approximation can be meaningfully found. If the
approximation with the desired precision cannot be found, the
function returns an empty list.

Examples:

Start with a rational number and obtain a floating-point ap-
proximation:

In> x:=N(956/1013)

Out> 0.9437314906

In> Rationalize(x)

OQut> 4718657453/5000000000;
In> V(GuessRational(x))

GuessRational: using 10 terms of the
continued fraction
Out> 956/1013;
In> ContFracList(x)
Qut> {0,1,16,1,3,2,1,1,1,1,508848,3,1,2,1,2,2%};

The first 10 terms of this continued fraction correspond to the
correct continued fraction for the original rational number.

In> NearRational (x)
Qut> 218/231;

This function found a different rational number closeby because
the precision was not high enough.

In> NearRational(x, 10)
Out> 956/1013;

Find an approximation to In 10 good to 8 digits:

In> BracketRational (N(Ln(10)), 10°(-8))
Out> {12381/5377,41062/17833};

See also: ContFrac, ContFracList, Rationalize

TruncRadian — remainder modulo 27
(standard library)

Calling format:

TruncRadian(r)

Parameters:

r — a number

Description:

TruncRadian calculates 7 mod (27), returning a value between

0 and 27. This function is used in the trigonometry functions,

just before doing a numerical calculation using a Taylor series.

It greatly speeds up the calculation if the value passed is a large

number.
The library uses the formula

r
TruncRadian (r) = r — {—J -2,

where r and 27 are calculated with twice the precision used in
the environment to make sure there is no rounding error in the
significant digits.
Examples:

In> 2*Internal’Pi()

Out> 6.283185307;

In> TruncRadian(6.28)

Out> 6.28;

In> TruncRadian(6.29)
Out> 0.0068146929;

See also: Sin, Cos, Tan

set the

Builtin’Precision’Set
precision
(YAcaAs internal)
Calling format:
Builtin’Precision’Set (n)
Parameters:

n — integer, new value of precision

Description:

18

This command sets the number of decimal digits to be used in
calculations. All subsequent floating point operations will allow
for at least n digits of mantissa.

This is not the number of digits after the decimal point. For
example, 123.456 has 3 digits after the decimal point and 6
digits of mantissa. The number 123.456 is adequately computed
by specifying Builtin’Precision’Set (6).

The call Builtin’Precision’Set(n) will not guarantee that
all results are precise to n digits.

When the precision is changed, all variables contain-
ing previously calculated values remain unchanged. The
Builtin’Precision’Set function only makes all further calcu-
lations proceed with a different precision.

Also, when typing floating-point numbers, the current value
of Builtin’Precision’Set is used to implicitly determine the
number of precise digits in the number.

Examples:

In> Builtin’Precision’Set (10)
Out> True;

In> N(Sin(1))

Out> 0.8414709848;

In> Builtin’Precision’Set (20)
Qut> True;

In> x:=N(Sin(1))

Out> 0.84147098480789650665;

The value x is not changed by a Builtin’Precision’Set ()
call:

In> [Builtin’Precision’Set(10); x;]
Out> 0.84147098480789650665;

The value x is rounded off to 10 digits after an arithmetic
operation:

In> x+0.
Out> 0.8414709848;

In the above operation, 0. was interpreted as a number
which is precise to 10 digits (the user does not need to type
0.0000000000 for this to happen). So the result of x+0. is
precise only to 10 digits.

See also: Builtin’Precision’Get, N

Builtin’Precision’Get — get the
current precision

(YAcaAs internal)
Calling format:
Builtin’Precision’Get ()
Description:

This command returns the current precision, as set by
Builtin’Precision’Set.

Examples:

In> Builtin’Precision’Get();
Out> 10;

In> Builtin’Precision’Set (20);
Out> True;

In> Builtin’Precision’Get();
Out> 20;

See also: Builtin’Precision’Set, N

19

Chapter 4

Error reporting

This chapter contains commands useful for reporting errors
to the user.

Check — report “hard” errors

TrapError — trap “hard” errors

GetCoreError — get “hard”

string

error

(YAcas internal)
Calling format:

Check(predicate,"error text")
TrapError (expression,errorHandler)
GetCoreError ()

Parameters:

predicate — expression returning True or False
"error text" — string to print on error
expression — expression to evaluate (causing potential error)
errorHandler — expression to be called to handle error

Description:

If predicate does not evaluate to True, the current operation
will be stopped, the string "error text" will be printed, and
control will be returned immediately to the command line. This
facility can be used to assure that some condition is satisfied dur-
ing evaluation of expressions (guarding against critical internal
€ITorS).

A “soft” error reporting facility that does not stop the exe-
cution is provided by the function Assert.

Example:

In> [Check(1=0,"bad value"); Echo(0K);]
In function "Check"
CommandLine (1) "bad value"

Note that 0K is not printed.

TrapError evaluates its argument expression, returning
the result of evaluating expression. If an error occurs,
errorHandler is evaluated, returning its return value in stead.

GetCoreError returns a string describing the core error. Trap-
Error and GetCoreError can be used in combination to write a
custom error handler.

See also: Assert

20

Assert — signal “soft” custom error
(standard library)
Calling format:

Assert("str", expr) pred
Assert("str") pred
Assert() pred

Precedence: 60000
Parameters:

pred — predicate to check
"str" — string to classify the error
expr — expression, error object

Description:

Assert is a global error reporting mechanism. It can be used to
check for errors and report them. An error is considered to oc-
cur when the predicate pred evaluates to anything except True.
In this case, the function returns False and an error object is
created and posted to the global error tableau. Otherwise the
function returns True.

Unlike the “hard” error function Check, the function Assert
does not stop the execution of the program.

The error object consists of the string "str" and an arbitrary
expression expr. The string should be used to classify the kind
of error that has occurred, for example “domain” or “format”.
The error object can be any expression that might be useful
for handling the error later; for example, a list of erroneous
values and explanations. The association list of error objects is
currently obtainable through the function GetErrorTableau().

If the parameter expr is missing, Assert substitutes True. If
both optional parameters "str" and expr are missing, Assert
creates an error of class "generic".

Errors can be handled by a custom error handler in the por-
tion of the code that is able to handle a certain class of errors.
The functions IsError, GetError and ClearError can be used.

Normally, all errors posted to the error tableau during evalua-
tion of an expression should be eventually printed to the screen.
This is the behavior of prettyprinters DefaultPrint, Print,
PrettyForm and TeXForm (but not of the inline prettyprinter,
which is enabled by default); they call DumpErrors after evalu-
ating the expression.

Examples:
In> Assert("bad value", "must be zero") 1=0
Out> False;
In> Assert("bad value", "must be one") 1=1

Out> True;

In> IsError()

Out> True;

In> IsError("bad value")
Out> True;

In> IsError("bad file")
Out> False;

In> GetError("bad value");
Out> "must be zero";

In> DumpErrors()

Error: bad value: must be zero
Out> True;

No more errors left:

In> IsError()
Out> False;

In> DumpErrors()
Out> True;

See also: IsError, DumpErrors, Check, GetError,
ClearError, ClearErrors, GetErrorTableau

DumpErrors — simple error handlers

ClearErrors — simple error handlers
(standard library)
Calling format:

DumpErrors ()
ClearErrors()

Description:
DumpErrors is a simple error handler for the global error re-
porting mechanism. It prints all errors posted using Assert
and clears the error tableau.

ClearErrors is a trivial error handler that does nothing ex-

cept it clears the tableau.

See also: Assert, IsError

IsError — check for custom error
(standard library)
Calling format:

IsError()
IsError("str")

Parameters:

"str" — string to classify the error

Description:

IsError () returns True if any custom errors have been reported
using Assert. The second form takes a parameter "str" that
designates the class of the error we are interested in. It returns

True if any errors of the given class "str" have been reported.

See also: GetError, ClearError, Assert, Check

21

GetError — custom errors handlers

ClearError — custom errors han-
dlers

GetErrorTableau — custom errors
handlers

(standard library)
Calling format:

GetError("str")
ClearError("str")
GetErrorTableau()

Parameters:
"str" — string to classify the error
Description:

These functions can be used to create a custom error handler.

GetError returns the error object if a custom error of class
"str" has been reported using Assert, or False if no errors of
this class have been reported.

ClearError("str") deletes the same error object that is re-
turned by GetError("str"). It deletes at most one error object.
It returns True if an object was found and deleted, and False
otherwise.

GetErrorTableau() returns the entire association list of cur-
rently reported errors.

Examples:

In> x:=1

Out> 1;

In> Assert("bad value", {x,"must be zero"}) x=0
Out> False;

In> GetError("bad value")

Out> {1, "must be zero"};

In> ClearError("bad value");

Out> True;

In> IsError()

Out> False;

See also: IsError, Assert, Check, ClearErrors

CurrentFile — return current input
file

CurrentLine — return current line
number on input

(YAcCAs internal)
Calling format:

CurrentFile()
CurrentLine ()

Description:

The functions CurrentFile and CurrentLine return a string
with the file name of the current file and the current line of
input respectively.

These functions are most useful in batch file calculations,
where there is a need to determine at which line an error oc-
curred. One can define a function

tst() := Echo({CurrentFile(),CurrentLine()});

which can then be inserted into the input file at various places,
to see how far the interpreter reaches before an error occurs.

See also: Echo

22

Chapter 5

Built-in (core) functions

Yacas comes with a small core of built-in functions and a large
library of user-defined functions. Some of these core functions
are documented in this chapter.

It is important for a developer to know which functions are
built-in and cannot be redefined or Retract-ed. Also, core func-
tions may be somewhat faster to execute than functions defined
in the script library. All core functions are listed in the file
corefunctions.h in the src/ subdirectory of the Yacas source
tree. The declarations typically look like this:

SetCommand (LispSubtract, "MathSubtract");

Here LispSubtract is the Yacas internal name for the function
and MathSubtract is the name visible to the Yacas language.
Built-in bodied functions and infix operators are declared in
the same file.

MathNot — built-in logical “not”
(YAcas internal)
Calling format:
MathNot (expression)
Description:

Returns “False” if “expression” evaluates to “True”, and vice
versa.
MathAnd — built-in logical “and”
Calling format:

MathAnd(...)
Description:
Lazy logical And: returns True if all args evaluate to True, and
does this by looking at first, and then at the second argument,
until one is False. If one of the arguments is False, And im-
mediately returns False without evaluating the rest. This is

faster, but also means that none of the arguments should cause
side effects when they are evaluated.

MathOr — built-in logical “or”
(YAcas internal)

Calling format:

23

MathOr(...)

MathOr is the basic logical ”or” function. Similarly to And, it
is lazy-evaluated. And(...) and Or(...) do also exist, defined
in the script library. You can redefine them as infix operators
yourself, so you have the choice of precedence. In the standard
scripts they are in fact declared as infix operators, so you can
write exprl And expr.

BitAnd — bitwise and operation
BitOr — bitwise or operation

BitXor — bitwise xor operation
(YAcaAs internal)
Calling format:
BitAnd(n,m)
BitOr(n,m)
BitXor(n,m)
Description:

[{PR]

These functions return bitwise “and”, “or” and “xor” of two

numbers.

Equals — check equality
(YAcAs internal)
Calling format:
Equals(a,b)
Description:
Compares evaluated a and b recursively (stepping into expres-

sions). So “Equals(a,b)“ returns “True” if the expressions would
be printed exactly the same, and “False” otherwise.

GreaterThan — comparison predicate

LessThan — comparison predicate
(YAcCAS internal)

Calling format:

GreaterThan(a,b)
LessThan(a,b)

Parameters:

a, b — numbers or strings

Description:

Comparing numbers or strings (lexicographically).
Example:

In> LessThan(1,1)

Out> False;

In> LessThan("a","b")

Out> True;
Math... — arbitrary-precision math
functions

(YAcas internal)
Calling format:

MathGed (n,m) (Greatest Common Divisor)
MathAdd(x,y) (add two numbers)
MathSubtract(x,y) (subtract two numbers)
MathMultiply(x,y) (multiply two numbers)
MathDivide(x,y) (divide two numbers)

than set by Builtin’Precision’Set. However, when the result
is mathematically not an integer, the functions return a floating-
point result which is correct only to the current precision.

Example:

In> Builtin’Precision’Set(10)
Out> True

In> Sqrt(10)

Out> Sqrt(10)

In> MathSqrt(10)

Out> 3.16227766

In> MathSqrt (490000%2°150)
Out> 26445252304070013196697600
In> MathSqrt (490000%27150+1)
Out> 0.264452523e26

In> MathPower(2,3)

Qut> 8

In> MathPower(2,-3)

Qut> 0.125
Fast... — double-precision math
functions

(YAcCAS internal)
Calling format:

FastLog(x) (natural logarithm), FastPower(x,y), FastArc-
Sin(x)

Description:

(smallest integer not smaller than X)Versions of these functions using the C++ library. These should

then at least be faster than the arbitrary precision versions.

ShiftLeft — built-in bitwise shift
left operation

ShiftRight — built-in bitwise shift
right operation

(YAcCAs internal)
Calling format:

ShiftLeft (expr,bits)
ShiftRight (expr,bits)

Shift bits to the left or to the right.

MathSqrt (x) (square root, must be x>=0)

MathFloor (x) (largest integer not larger than x)

MathCeil(x)

MathAbs (x) (absolute value of x, or |x|)

MathExp (x) (exponential, base 2.718...)

MathLog(x) (natural logarithm, for x>0)

MathPower (x,y) (power, x ~ y)

MathSin(x) (sine)

MathCos (x) (cosine)

MathTan(x) (tangent)

MathSinh (x) (hyperbolic sine)

MathCosh(x) (hyperbolic cosine)

MathTanh (x) (hyperbolic tangent)

MathArcSin(x) (inverse sine)

MathArcCos (x) (inverse cosine)

MathArcTan(x) (inverse tangent)

MathArcSinh(x) (inverse hyperbolic sine)

MathArcCosh(x) (inverse hyperbolic cosine)

MathArcTanh(x) (inverse hyperbolic tangent)

MathDiv(x,y) (integer division, result is an inteﬁﬁ&%niption:

MathMod (x,y) (remainder of division, or x mod y
Description:

These commands perform the calculation of elementary mathe-
matical functions. The arguments must be numbers. The rea-
son for the prefix Math is that the library needs to define equiv-
alent non-numerical functions for symbolic computations, such
as Exp, Sin and so on.

Note that all functions, such as the MathPower, MathSqrt,
MathAdd etc., accept integers as well as floating-point num-
bers. The resulting values may be integers or floats. If the
mathematical result is an exact integer, then the integer is re-
turned. For example, MathSqrt (25) returns the integer 5, and
MathPower (2,3) returns the integer 8. In such cases, the inte-
ger result is returned even if the calculation requires more digits

IsPromptShown — test for the Yacas
prompt option
(YACAS internal)
Calling format:
IsPromptShown ()
Description:

Returns False if Yacas has been started with the option to
suppress the prompt, and True otherwise.

24

GetTime — measure the time taken
by an evaluation

(YAcCAs internal)
Calling format:
GetTime (expr)
Parameters:
expr — any expression
Description:

The function GetTime (expr) evaluates the expression expr and
returns the time needed for the evaluation. The result is re-
turned as a floating-point number of seconds. The value of the
expression expr is lost.

The result is the “user time” as reported by the OS, not the
real (“wall clock”) time. Therefore, any CPU-intensive pro-
cesses running alongside Yacas will not significantly affect the
result of GetTime.

Example:

In> GetTime(Simplify((axb)/(b*a)))
Out> 0.09;

See also: Time

25

Chapter 6

Generic objects

Generic objects are objects that are implemented in C++,
but can be accessed through the Yacas interpreter.

IsGeneric — check for generic object

(YAcAs internal)
Calling format:
IsGeneric(object)
Description:

Returns True if an object is of a generic object type.

GenericTypeName — get type name

(YAcCAs internal)
Calling format:
GenericTypeName (object)
Description:

Returns a string representation of the name of a generic object.
EG

In> GenericTypeName (Array’Create(10,1))
OQut> "Array";

Array’Create — create array
(YAcas internal)
Calling format:
Array’Create(size,init)
Description:
Creates an array with size elements, all initialized to the value
init.
Array’Size — get array size
(YAcAs internal)
Calling format:
Array’Size(array)
Description:

Returns the size of an array (number of elements in the array).

26

Array’Get — fetch array element

(YAcCAs internal)
Calling format:

Array’Get (array, index)
Description:

Returns the element at position index in the array passed. Ar-
rays are treated as base-one, so index set to 1 would return the
first element.

Arrays can also be accessed through the [] operators. So
array[index] would return the same as Array’Get(array,
index).

Array’Set — set array element

(YAcCAs internal)
Calling format:

Array’Set (array, index,element)
Description:

Sets the element at position index in the array passed to the
value passed in as argument to element. Arrays are treated as
base-one, so index set to 1 would set first element.

Arrays can also be accessed through the [1 opera-
tors. So array[index] element would do the same as
Array’Set(array, index,element).

Array’CreateFromList — convert list
to array

(YACAS internal)
Calling format:
Array’CreateFromList (1list)
Description:

Creates an array from the contents of the list passed in.

Array’ToList — convert array to list
(YAcas internal)
Calling format:
Array’Tolist (array)
Description:

Creates a list from the contents of the array passed in.

27

Chapter 7

The Yacas test suite

This chapter describes commands used for verifying correct
performance of Yacas.

Yacas comes with a test suite which can be found in the di-
rectory tests/. Typing

make test

on the command line after Yacas was built will run the test.
This test can be run even before make install, as it only uses
files in the local directory of the Yacas source tree. The default
extension for test scripts is .yts (Yacas test script).

The verification commands described in this chapter only
display the expressions that do not evaluate correctly. Errors
do not terminate the execution of the Yacas script that uses
these testing commands, since they are meant to be used in test
scripts.

Verify — verifying equivalence of
two expressions

TestYacas — verifying equivalence of
two expressions

LogicVerify — verifying equivalence
of two expressions

LogicTest — verifying equivalence of
two expressions

(standard library)
Calling format:

Verify(question,answer)
TestYacas(question,answer)
LogicVerify(question,answer)
LogicTest(variables,exprl,expr2)

Parameters:

question — expression to check for
answer — expected result after evaluation
variables — list of variables

exprN — Some boolean expression

Description:

The commands Verify, TestYacas, LogicVerify and
LogicTest can be used to verify that an expression is equivalent
to a correct answer after evaluation. All three commands
return True or False.

For some calculations, the demand that two expressions are
identical syntactically is too stringent. The Yacas system might
change at various places in the future, but 1 4+ x would still be
equivalent, from a mathematical point of view, to x + 1.

The general problem of deciding that two expressions a and
b are equivalent, which is the same as saying that a — b =10 , is
generally hard to decide on. The following commands solve this
problem by having domain-specific comparisons.

The comparison commands do the following comparison

types:

e Verify — verify for literal equality. This is the fastest and
simplest comparison, and can be used, for example, to test
that an expression evaluates to 2.

e TestYacas — compare two expressions after simplification
as multivariate polynomials. If the two arguments are
equivalent multivariate polynomials, this test succeeds.
TestYacas uses Simplify. Note: TestYacas currently
should not be used to test equality of lists.

e LogicVerify — Perform a test by using CanProve to verify
that from question the expression answer follows. This
test command is used for testing the logic theorem prover
in Yacas.

e LogicTest — Generate a truth table for the two expressions
and compare these two tables. They should be the same if
the two expressions are logically the same.

Examples:

In> Verify(1+2,3)

Out> True;

In> Verify(x*(1+x),x"2+x)

okok ok ok okokok ok ok sk ok okokok ok

x*(x+1) evaluates to x*(x+1) which differs
from x"2+x

okokokokokokok ok ok ok ok okokok ok

Out> False;

In> TestYacas(x*(1+x),x"2+x)

Out> True;

In> Verify(a And ¢ Or b And Not c,a Or b)

sokokskokokok ok ok o ok sk sk ok ok ok ok

a And c Or b And Not c evaluates to a And c
Or b And Not c which differs from a Or b

sokokskokokok ok ok o ok sk sk ok ok ok ok

Out> False;

In> LogicVerify(a And ¢ Or b And Not c,a Or b)

Out> True;

28

In> LogicVerify(a And ¢ Or b And Not c,b Or a)
Out> True;

number — number to round off

precision — precision to use for round-off

In> LogicTest({A,B,C},Not((Not A) And (Not B)),A Or B)

Out> True

Description:

In> LogicTest({A,B,C},Not((Not A) And (Not B)),A Or C)

ook ok ok ok ok ok ok ok ok ok ok Kk ok
CommandLine: 1

$TrueFalse4 ({A,B,C},Not(Not A And Not B))
evaluates to

The function RoundTo rounds a floating point number to a spec-
ified precision, allowing for testing for correctness using the

Verify command.

Examples:

{{{False,False},{True,True}},{{True,True},{True,True}}}

which differs from

In> N(RoundTo (Exp(1),30),30)

{{{False,True},{False,True}},{{True, True},{True,True}}} 4.;5 5 71828182110230114951959786552;

ook ko ok ok ook okook ok ok ok ok ok ok
Out> False

See also: Simplify, CanProve, KnownFailure

KnownFailure — Mark a test as a
known failure

(standard library)
Calling format:
KnownFailure(test)
Parameters:
test — expression that should return False on failure
Description:

The command KnownFailure marks a test as known to fail by
displaying a message to that effect on screen.

This might be used by developers when they have no time
to fix the defect, but do not wish to alarm users who download
Yacas and type make test.

Examples:

In> KnownFailure(Verify(1,2))
Known failure:
oK KKK KKK KK KK KoKk

1 evaluates to 1 which differs from 2
ook kokokokok koK ook ok ok ko ok
Out> False;
In> KnownFailure(Verify(1,1))
Known failure:
Failure resolved!
Out> True;

See also: Verify, TestYacas, LogicVerify

RoundTo — Round a real-valued re-
sult to a set number of digits

(standard library)
Calling format:
RoundTo (number,precision)

Parameters:

In> N(RoundTo(Exp(1),20),20)
Out> 2.71828182796964237096;

See also: Verify, VerifyArithmetic, VerifyDiv

VerifyArithmetic — Special purpose
arithmetic verifiers

RandVerifyArithmetic — Special pur-
pose arithmetic verifiers

VerifyDiv — Special purpose arith-
metic verifiers

(standard library)
Calling format:

VerifyArithmetic(x,n,m)
RandVerifyArithmetic(n)
VerifyDiv(u,v)

Parameters:
X, n, m, u, v — integer arguments
Description:

The commands VerifyArithmetic and VerifyDiv test a math-
ematic equality which should hold, testing that the result re-
turned by the system is mathematically correct according to a
mathematically provable theorem.

VerifyArithmetic verifies for an arbitrary set of numbers z,
n and m that

(" -1 (@™ -1 =z"T" -2 —2™ + 1.

The left and right side represent two ways to arrive at the
same result, and so an arithmetic module actually doing the
calculation does the calculation in two different ways. The re-
sults should be exactly equal.

RandVerifyArithmetic(n) calls VerifyArithmetic with ran-
dom values, n times.

VerifyDiv(u,v) checks that

u = vDiv (u,v) + u mod v.

Examples:

29

In> VerifyArithmetic(100,50,60)
Out> True;

In> RandVerifyArithmetic(4)
Out> True;

In> VerifyDiv(x"2+2*x+3,x+1)
Out> True;

In> VerifyDiv(3,2)

Out> True;

See also: Verify

30

Chapter 8

Glossary

This is a short glossary of terms frequently used in the YAcAs
documentation.

arity

“Arity” is the number of arguments of a function. For example,
the function Cos(x) has one argument and so we say that ”Cos
has arity 1”7. Arity of a function can be 0, 1, 2, ...

Yacas allows to define functions with the same name but
different arities, and different rules corresponding to these ari-
ties will be used. Also, it is possible to define a function with
optional arguments, for example, P1lot2D is one such function.
Such functions can have any arity larger or equal to a certain
minimum arity (the number of non-optional arguments).

See also: Function, OpPrecedence, Rule

array

An array is a container object that can hold a fixed number of
other Yacas objects in it. Individual elements of an array can
be accessed using the [] operation. Most list operations also
work on arrays.

Arrays are faster than lists but the array size cannot be
changed.

See also: Array’Create

atoms

Atoms are basic Yacas objects that are used to represent sym-
bols, numbers, and function names. An atom has a string rep-
resentation which is shown when it is displayed. For example,
3.14159, x, A123, +, "good morning" are atoms.

Atoms can be of type string, number, or symbol. For exam-
ple, y1 is a symbolic atom, 954 is a number atom, and "" is
an (empty) string atom. Symbolic atoms are normally used in
YACAS to denote mathematical unknowns and function names.
Number and string atoms are used to denote values.

A symbolic atom can be bound to a value (in which case it
becomes a variable), or to a rule or several rules (in which case it
becomes a function). An atom can also have a property object.

See also: Atom, String

CAS

Abbreviation for “computer algebra system”. YACAS is a CAS.

31

constants

Constants such as I, Pi or GoldenRatio are symbolic atoms
that are specially interpreted by YACAs. For example, there are
simplification rules that transform expressions such as Sin(Pi)
into 0. When requesting a numerical evaluation of a constant,
the numerical value is given to the current value as set with N.

Some constants take a long time to compute and therefore
they are cached at the highest precision computed so far. These
are the “cached constants”.

See also: N, CachedConstant, Pi, GoldenRatio,
CatalanConstant, gamma, I

equations

To denote symbolic equations, the operator == is used. This
operator does not assign or compare its sides. For example, the
expression Sin(x)==1 is kept unevaluated and can be passed as
argument to functions. For example,

In> Solve(Sin(x)==1, x)

Out> {x==Pi/2};

The symbolic equation operator == is also useful to represent
solutions of equations or to specify substitutions, give options,
and so on.

See also: Solve, Where, Plot2D

functions

A function is a symbolic atom that is bound to a rule or several
rules. A function can have none, one, or more arguments. Func-
tions can also have a variable number of arguments. Arguments
of functions are arbitrary Yacas objects.

Functions can be evaluated, that is, the rules bound to them
may be executed. For example, Cos (Pi+0) is an expression that
contains two functions and four atoms. The atom Pi is a sym-
bolic atom which is normally not bound to anything. The atom
0 is a numeric atom.

The atoms Cos and + are symbolic atoms which are bound to
appropriate simplification rules. So these two atoms are func-
tions. Note that these functions have different syntax. Cos is a
normal function which takes its arguments in parentheses. The
atom + is a function with special syntax because ”+” is placed
between its arguments and no parentheses are used.

The rules to which + is bound are such that the expression
Pi+0 is evaluated to the symbolic atom Pi. The rules for Cos
are such that the expression Cos(P1i) is evaluated to the numeric
atom -1. The example YACAS session is:

In> Cos(Pi+0)
Qut> -1;

Some functions are built-in and implemented in C++, while
others are library functions.

The built-in functions are usually less flexible than the li-
brary functions because they cannot be left unevaluated. Given
incorrect arguments, a built-in function will generate an error.
However, a user-defined function may simply return unevaluated
in such cases.

See also: Function, Rule, <--

lists

A list is a basic YACAS container object. A list is written as e.g.
{a, b, c} or {} (empty list). Individual elements of a list can
be accessed using the [] operation. Lists can be concatenated,
and individual elements can be removed or inserted.

Lists are ubiquitous in YACAS. Most data structures in the
standard library is based on lists.

Lists are also used internally to represent YACAS expressions.
For example, the expression Cos(x+1) is represented internally
as a nested list:

In> FullForm(Cos(x+1))
(Cos

+x1))
Out> Cos(x+1);

See also: List, Listify, UnList, Length, FullForm

matrices

A matrix is represented as a list of lists. Matrices are represented
in the “row-major” order: a matrix is a list of rows, and each
row is a list of its elements.

Some basic linear algebra operations on matrices are sup-
ported.

See also: Determinant, Identity, IsDiagonal, EigenValues

operators

Operators are functions that have special syntax declared for
them. An operator can be “bodied”, infix, prefix or postfix.
Because of this, operators must have precedence.

Apart from the syntax, operators are exactly the same as any
other functions, they can have rules bound to them in the same
way.

See also: Bodied, Infix, Prefix, Postfix

plotting

Plotting is currently supported via the Plot2D and Plot3DS
functions. Functions of one or two variables can be plotted
on given intervals with a given precision. YACAS generates all
numerical data for plots.

See also: Plot2D, P1lot3DS

32

precedence

Precedence is a property of the syntax of an operator that spec-
ifies how it is parsed. Only operators, i.e. functions with special
syntax, can have precedence. Precedence values are nonnegative
integers: 0, 1, ... Lower numbers bind more tightly.

For example, the operator “+”’ binds less tightly (i.e. has
a higher precedence value) than the operator “*” and so the
expression a+b*c is parsed as a+(b*c), as one would expect.

Infix operators can have different left-side and right-side
precedence. For example, the infix operator “-” has left prece-
dence 70 and right precedence 40 — this allows us to parse expres-
sions such as a-b+c correctly, as a —b+c¢, and not as a— (b + ¢).

See also: Bodied, OpPrecedence, OpLeftPrecedence,
OpRightPrecedence

properties

Properties are special additional objects (tags) that can be tied
to expressions. For example, the expression 1+x may be tagged
by an expression y by the command

In> a:= Extralnfo’Set(1+x,y);
Out> 1+x;

Now a refers to an expression 1+x which is different from all
other copies of 1+x because it is tagged by y.

See also: ExtraInfo’Get, ExtraInfo’Set

rules

Rules are the principal mechanism of expression evaluation in
YAacas. A rule specifies that a certain symbolic expression is
to be replaced by another expression. If no rule that matches
a given symbolic expression can be found, the expression is left
unevaluated. This is usually the desired behavior for a CAS.
For example, a user can type

In> funci(x+0)
Out> funci(x);

and use an undefined function funcl. Since no rules are defined
for the function funci, it is not evaluated, but its argument has
been simplified.
Only expressions containing functions can be evaluated by
rules. (Atoms are evaluated only if they are bound to a value.)
Several rules can be defined for a given function. Rules can
be erased or added at run time.

See also: Rule, <--, Retract

strings

A string is an atom with character string value, for example,
"abcd". Individual characters of the string can be accessed us-
ing the [] operation. Some string manipulation functions are
supported.

See also: String, StringMid’Get, StringMid’Set

syntax

YACAS uses an infix syntax similar to C or Fortran. However,
the syntax is entirely user-defined and very flexible. Infix, prefix,
postfix operators can be defined, as well as “bodied” functions.
This allows to write mathematical expressions more comfort-
ably, for example,

In> D(x) Sin(x)+1
Out> Cos(x);

Functions with special syntax can have different precedence.

See also: Bodied, Infix, Prefix, Postfix, OpPrecedence

variables

Variables are symbolic atoms bound to a “value”. Value is any
Yacas object, such as an atom or a list. For example, after
executing

In> a :=1

Out> 1;
the symbolic atom a becomes a variable bound to a value, the
numeric atom 1.

See also: Eval, :=, Clear

warranty

YAcaAs is Free Software (“logiciel libre”) and comes with NO
WARRANTY. See the appropriate section of the GPL, in The Yacas
Programmer’s Function Reference, Chapter 1, Section 2 for full
information.

33

Chapter 9

GNU General Public License

This chapter contains the GNU General Public License
(GPL). This information is important for everyone using or
modifying the Yacas source code or binaries.

GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc. 59
Temple Place, Suite 330, Boston, MA 02111-1307 USA Every-
one is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

9.1 Preamble

The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General
Public License is intended to guarantee your freedom to share
and change free software-to make sure the software is free for
all its users. This General Public License applies to most of the
Free Software Foundation’s software and to any other program
whose authors commit to using it. (Some other Free Software
Foundation software is covered by the GNU Library General
Public License instead.) You can apply it to your programs,
too.

When we speak of free software, we are referring to freedom,
not price. Our General Public Licenses are designed to make
sure that you have the freedom to distribute copies of free soft-
ware (and charge for this service if you wish), that you receive
source code or can get it if you want it, that you can change the
software or use pieces of it in new free programs; and that you
know you can do these things.

To protect your rights, we need to make restrictions that for-
bid anyone to deny you these rights or to ask you to surrender
the rights. These restrictions translate to certain responsibil-
ities for you if you distribute copies of the software, or if you
modify it.

For example, if you distribute copies of such a program,
whether gratis or for a fee, you must give the recipients all the
rights that you have. You must make sure that they, too, re-
ceive or can get the source code. And you must show them these
terms so they know their rights.

We protect your rights with two steps: (1) copyright the soft-
ware, and (2) offer you this license which gives you legal per-
mission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make
certain that everyone understands that there is no warranty for
this free software. If the software is modified by someone else
and passed on, we want its recipients to know that what they
have is not the original, so that any problems introduced by
others will not reflect on the original authors’ reputations.

34

Finally, any free program is threatened constantly by software
patents. We wish to avoid the danger that redistributors of a
free program will individually obtain patent licenses, in effect
making the program proprietary. To prevent this, we have made
it clear that any patent must be licensed for everyone’s free use
or not licensed at all.

The precise terms and conditions for copying, distribution
and modification follow.

GNU GENERAL PUBLIC LICENSE TERMS AND CON-
DITIONS FOR COPYING, DISTRIBUTION AND MODIFI-
CATION

0. This License applies to any program or other work which
contains a notice placed by the copyright holder saying it may
be distributed under the terms of this General Public License.
The “Program”, below, refers to any such program or work,
and a “work based on the Program” means either the Program
or any derivative work under copyright law: that is to say, a
work containing the Program or a portion of it, either verbatim
or with modifications and/or translated into another language.
(Hereinafter, translation is included without limitation in the
term “modification”.) Each licensee is addressed as “you”.

Activities other than copying, distribution and modification
are not covered by this License; they are outside its scope. The
act of running the Program is not restricted, and the output
from the Program is covered only if its contents constitute a
work based on the Program (independent of having been made
by running the Program). Whether that is true depends on
what the Program does.

1. You may copy and distribute verbatim copies of the Pro-
gram’s source code as you receive it, in any medium, provided
that you conspicuously and appropriately publish on each copy
an appropriate copyright notice and disclaimer of warranty; keep
intact all the notices that refer to this License and to the absence
of any warranty; and give any other recipients of the Program
a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a
copy, and you may at your option offer warranty protection in
exchange for a fee.

2. You may modify your copy or copies of the Program or
any portion of it, thus forming a work based on the Program,
and copy and distribute such modifications or work under the
terms of Section 1 above, provided that you also meet all of
these conditions:

a) You must cause the modified files to carry prominent no-
tices stating that you changed the files and the date of any
change.

b) You must cause any work that you distribute or publish,
that in whole or in part contains or is derived from the Program
or any part thereof, to be licensed as a whole at no charge to all
third parties under the terms of this License.

c¢) If the modified program normally reads commands inter-

actively when run, you must cause it, when started running for
such interactive use in the most ordinary way, to print or display
an announcement including an appropriate copyright notice and
a notice that there is no warranty (or else, saying that you pro-
vide a warranty) and that users may redistribute the program
under these conditions, and telling the user how to view a copy
of this License. (Exception: if the Program itself is interactive
but does not normally print such an announcement, your work
based on the Program is not required to print an announce-
ment.)

These requirements apply to the modified work as a whole.
If identifiable sections of that work are not derived from the
Program, and can be reasonably considered independent and
separate works in themselves, then this License, and its terms,
do not apply to those sections when you distribute them as
separate works. But when you distribute the same sections as
part of a whole which is a work based on the Program, the
distribution of the whole must be on the terms of this License,
whose permissions for other licensees extend to the entire whole,
and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or
contest your rights to work written entirely by you; rather,
the intent is to exercise the right to control the distribution
of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on
the Program with the Program (or with a work based on the
Program) on a volume of a storage or distribution medium does
not bring the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based
on it, under Section 2) in object code or executable form under
the terms of Sections 1 and 2 above provided that you also do
one of the following:

a) Accompany it with the complete corresponding machine-
readable source code, which must be distributed under the terms
of Sections 1 and 2 above on a medium customarily used for
software interchange; or,

b) Accompany it with a written offer, valid for at least three
years, to give any third party, for a charge no more than your
cost of physically performing source distribution, a complete
machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a
medium customarily used for software interchange; or,

¢) Accompany it with the information you received as to the
offer to distribute corresponding source code. (This alternative
is allowed only for noncommercial distribution and only if you
received the program in object code or executable form with
such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the
work for making modifications to it. For an executable work,
complete source code means all the source code for all modules
it contains, plus any associated interface definition files, plus
the scripts used to control compilation and installation of the
executable. However, as a special exception, the source code dis-
tributed need not include anything that is normally distributed
(in either source or binary form) with the major components
(compiler, kernel, and so on) of the operating system on which
the executable runs, unless that component itself accompanies
the executable.

If distribution of executable or object code is made by offering
access to copy from a designated place, then offering equivalent
access to copy the source code from the same place counts as
distribution of the source code, even though third parties are
not compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the
Program except as expressly provided under this License. Any

35

attempt otherwise to copy, modify, sublicense or distribute the
Program is void, and will automatically terminate your rights
under this License. However, parties who have received copies,
or rights, from you under this License will not have their licenses
terminated so long as such parties remain in full compliance.

5. You are not required to accept this License, since you have
not signed it. However, nothing else grants you permission to
modify or distribute the Program or its derivative works. These
actions are prohibited by law if you do not accept this License.
Therefore, by modifying or distributing the Program (or any
work based on the Program), you indicate your acceptance of
this License to do so, and all its terms and conditions for copy-
ing, distributing or modifying the Program or works based on
it.

6. Each time you redistribute the Program (or any work
based on the Program), the recipient automatically receives a
license from the original licensor to copy, distribute or modify
the Program subject to these terms and conditions. You may
not impose any further restrictions on the recipients’ exercise of
the rights granted herein. You are not responsible for enforcing
compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation
of patent infringement or for any other reason (not limited to
patent issues), conditions are imposed on you (whether by court
order, agreement or otherwise) that contradict the conditions of
this License, they do not excuse you from the conditions of this
License. If you cannot distribute so as to satisfy simultane-
ously your obligations under this License and any other perti-
nent obligations, then as a consequence you may not distribute
the Program at all. For example, if a patent license would not
permit royalty-free redistribution of the Program by all those
who receive copies directly or indirectly through you, then the
only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable
under any particular circumstance, the balance of the section
is intended to apply and the section as a whole is intended to
apply in other circumstances.

It is not the purpose of this section to induce you to infringe
any patents or other property right claims or to contest validity
of any such claims; this section has the sole purpose of pro-
tecting the integrity of the free software distribution system,
which is implemented by public license practices. Many people
have made generous contributions to the wide range of software
distributed through that system in reliance on consistent appli-
cation of that system; it is up to the author/donor to decide
if he or she is willing to distribute software through any other
system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is
believed to be a consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted
in certain countries either by patents or by copyrighted inter-
faces, the original copyright holder who places the Program un-
der this License may add an explicit geographical distribution
limitation excluding those countries, so that distribution is per-
mitted only in or among countries not thus excluded. In such
case, this License incorporates the limitation as if written in the
body of this License.

9. The Free Software Foundation may publish revised and/or
new versions of the General Public License from time to time.
Such new versions will be similar in spirit to the present version,
but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the
Program specifies a version number of this License which applies
to it and “any later version”, you have the option of following the

terms and conditions either of that version or of any later version
published by the Free Software Foundation. If the Program does
not specify a version number of this License, you may choose
any version ever published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into
other free programs whose distribution conditions are different,
write to the author to ask for permission. For software which is
copyrighted by the Free Software Foundation, write to the Free
Software Foundation; we sometimes make exceptions for this.
Our decision will be guided by the two goals of preserving the
free status of all derivatives of our free software and of promoting
the sharing and reuse of software generally.

9.2 NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF
CHARGE, THERE IS NO WARRANTY FOR THE PRO-
GRAM, TO THE EXTENT PERMITTED BY APPLICABLE
LAW. EXCEPT WHEN OTHERWISE STATED IN WRIT-
ING THE COPYRIGHT HOLDERS AND/OR OTHER PAR-
TIES PROVIDE THE PROGRAM “AS IS” WITHOUT WAR-
RANTY OF ANY KIND, EITHER EXPRESSED OR IM-
PLIED, INCLUDING, BUT NOT LIMITED TO, THE IM-
PLIED WARRANTIES OF MERCHANTABILITY AND FIT-
NESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK
AS TO THE QUALITY AND PERFORMANCE OF THE
PROGRAM IS WITH YOU. SHOULD THE PROGRAM
PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL
NECESSARY SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLI-
CABLE LAW OR AGREED TO IN WRITING WILL ANY
COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO
MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM
AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAM-
AGES, INCLUDING ANY GENERAL, SPECIAL, INCIDEN-
TAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF
THE USE OR INABILITY TO USE THE PROGRAM (IN-
CLUDING BUT NOT LIMITED TO LOSS OF DATA OR
DATA BEING RENDERED INACCURATE OR LOSSES SUS-
TAINED BY YOU OR THIRD PARTIES OR A FAILURE OF
THE PROGRAM TO OPERATE WITH ANY OTHER PRO-
GRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY
HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New
Programs

If you develop a new program, and you want it to be of the
greatest possible use to the public, the best way to achieve this
is to make it free software which everyone can redistribute and
change under these terms.

To do so, attach the following notices to the program. It
is safest to attach them to the start of each source file to most
effectively convey the exclusion of warranty; and each file should
have at least the “copyright” line and a pointer to where the full
notice is found.

<one line to give the program’s name and a brief idea of what
it does.> Copyright (C) <year> <name of author>

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

36

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PAR-
TICULAR PURPOSE. See the GNU General Public License for
more details.

You should have received a copy of the GNU General Public
License along with this program; if not, write to the Free Soft-
ware Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA

Also add information on how to contact you by electronic and
paper mail.

If the program is interactive, make it output a short notice
like this when it starts in an interactive mode:

Gnomovision version 69, Copyright (C) year name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for
details type ‘show w’. This is free software, and you are welcome
to redistribute it under certain conditions; type ‘show ¢’ for
details.

The hypothetical commands ‘show w’ and ‘show ¢’ should
show the appropriate parts of the General Public License. Of
course, the commands you use may be called something other
than ‘show w’ and ‘show c¢’; they could even be mouse-clicks or
menu items—whatever suits your program.

You should also get your employer (if you work as a program-
mer) or your school, if any, to sign a “copyright disclaimer” for
the program, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the
program ‘Gnomovision’ (which makes passes at compilers) writ-
ten by James Hacker.

<signature of Ty Coon>, 1 April 1989 Ty Coon, President of
Vice

This General Public License does not permit incorporating
your program into proprietary programs. If your program is a
subroutine library, you may consider it more useful to permit
linking proprietary applications with the library. If this is what
you want to do, use the GNU Library General Public License
instead of this License.

Chapter 10

GNU Free Documentation License

Version 1.1, March 2000

Copyright (C) 2000 Free Software Foundation, Inc.

59 Temple Place, Suite 330
Boston, MA, 02111-1307
UsA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The purpose of this License is to make a manual, textbook,
or other written document “free” in the sense of freedom: to
assure everyone the effective freedom to copy and redistribute
it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author
and publisher a way to get credit for their work, while not being
considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that deriva-
tive works of the document must themselves be free in the same
sense. It complements the GNU General Public License, which
is a copyleft license designed for free software.

We have designed this License in order to use it for man-
uals for free software, because free software needs free docu-
mentation: a free program should come with manuals providing
the same freedoms that the software does. But this License is
not limited to software manuals; it can be used for any textual
work, regardless of subject matter or whether it is published
as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

Applicability and Definitions

This License applies to any manual or other work that contains a
notice placed by the copyright holder saying it can be distributed
under the terms of this License. The “Document”, below, refers
to any such manual or work. Any member of the public is a
licensee, and is addressed as “you”.

A “Modified Version” of the Document means any work con-
taining the Document or a portion of it, either copied verbatim,
or with modifications and/or translated into another language.

A “Secondary Section” is a named appendix or a front-matter
section of the Document that deals exclusively with the rela-
tionship of the publishers or authors of the Document to the
Document’s overall subject (or to related matters) and contains
nothing that could fall directly within that overall subject. (For
example, if the Document is in part a textbook of mathematics,
a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the
subject or with related matters, or of legal, commercial, philo-
sophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections
whose titles are designated, as being those of Invariant Sections,
in the notice that says that the Document is released under this
License.

The “Cover Texts” are certain short passages of text that are
listed, as Front-Cover Texts or Back-Cover Texts, in the notice
that says that the Document is released under this License.

A “Transparent” copy of the Document means a machine-
readable copy, represented in a format whose specification is
available to the general public, whose contents can be viewed
and edited directly and straightforwardly with generic text ed-
itors or (for images composed of pixels) generic paint programs
or (for drawings) some widely available drawing editor, and that
is suitable for input to text formatters or for automatic transla-
tion to a variety of formats suitable for input to text formatters.
A copy made in an otherwise Transparent file format whose
markup has been designed to thwart or discourage subsequent
modification by readers is not Transparent. A copy that is not
“Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include
plain ASCII without markup, Texinfo input format, LaTeX in-
put format, SGML or XML using a publicly available DTD, and
standard-conforming simple HTML designed for human modi-
fication. Opaque formats include PostScript, PDF, proprietary
formats that can be read and edited only by proprietary word
processors, SGML or XML for which the DTD and/or process-
ing tools are not generally available, and the machine-generated
HTML produced by some word processors for output purposes
only.

The “Title Page” means, for a printed book, the title page
itself, plus such following pages as are needed to hold, legibly,
the material this License requires to appear in the title page. For
works in formats which do not have any title page as such, “Title
Page” means the text near the most prominent appearance of
the work’s title, preceding the beginning of the body of the text.

Verbatim Copying

You may copy and distribute the Document in any medium,
either commercially or noncommercially, provided that this Li-
cense, the copyright notices, and the license notice saying this
License applies to the Document are reproduced in all copies,
and that you add no other conditions whatsoever to those of
this License. You may not use technical measures to obstruct
or control the reading or further copying of the copies you make
or distribute. However, you may accept compensation in ex-
change for copies. If you distribute a large enough number of
copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated
above, and you may publicly display copies.

37

Copying in Quantity

If you publish printed copies of the Document numbering more
than 100, and the Document’s license notice requires Cover
Texts, you must enclose the copies in covers that carry, clearly
and legibly, all these Cover Texts: Front-Cover Texts on the
front cover, and Back-Cover Texts on the back cover. Both cov-
ers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with
all words of the title equally prominent and visible. You may
add other material on the covers in addition. Copying with
changes limited to the covers, as long as they preserve the title
of the Document and satisfy these conditions, can be treated as
verbatim copying in other respects.

If the required texts for either cover are too voluminous to
fit legibly, you should put the first ones listed (as many as fit
reasonably) on the actual cover, and continue the rest onto ad-
jacent pages.

If you publish or distribute Opaque copies of the Docu-
ment numbering more than 100, you must either include a
machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a publicly-accessible
computer-network location containing a complete Transparent
copy of the Document, free of added material, which the gen-
eral network-using public has access to download anonymously
at no charge using public-standard network protocols. If you
use the latter option, you must take reasonably prudent steps,
when you begin distribution of Opaque copies in quantity, to
ensure that this Transparent copy will remain thus accessible at
the stated location until at least one year after the last time you
distribute an Opaque copy (directly or through your agents or
retailers) of that edition to the public.

It is requested, but not required, that you contact the authors
of the Document well before redistributing any large number of
copies, to give them a chance to provide you with an updated
version of the Document.

Modifications

You may copy and distribute a Modified Version of the Docu-
ment under the conditions of sections 2 and 3 above, provided
that you release the Modified Version under precisely this Li-
cense, with the Modified Version filling the role of the Docu-
ment, thus licensing distribution and modification of the Modi-
fied Version to whoever possesses a copy of it. In addition, you
must do these things in the Modified Version:

1. Use in the Title Page (and on the covers, if any) a title
distinct from that of the Document, and from those of pre-
vious versions (which should, if there were any, be listed
in the History section of the Document). You may use the
same title as a previous version if the original publisher of

that version gives permission.

List on the Title Page, as authors, one or more persons or
entities responsible for authorship of the modifications in
the Modified Version, together with at least five of the prin-
cipal authors of the Document (all of its principal authors,
if it has less than five).

State on the Title page the name of the publisher of the
Modified Version, as the publisher.

Preserve all the copyright notices of the Document.

5. Add an appropriate copyright notice for your modifications
adjacent to the other copyright notices.

Include, immediately after the copyright notices, a license
notice giving the public permission to use the Modified

38

Version under the terms of this License, in the form shown
in the Addendum below.

Preserve in that license notice the full lists of Invariant
Sections and required Cover Texts given in the Document’s
license notice.

8. Include an unaltered copy of this License.

9. Preserve the section entitled “History”, and its title, and
add to it an item stating at least the title, year, new au-
thors, and publisher of the Modified Version as given on
the Title Page. If there is no section entitled “History” in
the Document, create one stating the title, year, authors,
and publisher of the Document as given on its Title Page,
then add an item describing the Modified Version as stated
in the previous sentence.

10. Preserve the network location, if any, given in the Docu-
ment for public access to a Transparent copy of the Docu-
ment, and likewise the network locations given in the Doc-
ument for previous versions it was based on. These may be
placed in the “History” section. You may omit a network
location for a work that was published at least four years
before the Document itself, or if the original publisher of

the version it refers to gives permission.

11. In any section entitled “Acknowledgements” or “Dedica-
tions”, preserve the section’s title, and preserve in the sec-
tion all the substance and tone of each of the contributor

acknowledgements and/or dedications given therein.

12. Preserve all the Invariant Sections of the Document, unal-
tered in their text and in their titles. Section numbers or

the equivalent are not considered part of the section titles.

13. Delete any section entitled “Endorsements”. Such a section

may not be included in the Modified Version.

14. Do not retitle any existing section as “Endorsements” or

to conflict in title with any Invariant Section.

If the Modified Version includes new front-matter sections or
appendices that qualify as Secondary Sections and contain no
material copied from the Document, you may at your option
designate some or all of these sections as invariant. To do this,
add their titles to the list of Invariant Sections in the Modified
Version’s license notice. These titles must be distinct from any
other section titles.

You may add a section entitled “Endorsements”, provided it
contains nothing but endorsements of your Modified Version by
various parties — for example, statements of peer review or that
the text has been approved by an organization as the authori-
tative definition of a standard.

You may add a passage of up to five words as a Front-Cover
Text, and a passage of up to 25 words as a Back-Cover Text, to
the end of the list of Cover Texts in the Modified Version. Only
one passage of Front-Cover Text and one of Back-Cover Text
may be added by (or through arrangements made by) any one
entity. If the Document already includes a cover text for the
same cover, previously added by you or by arrangement made
by the same entity you are acting on behalf of, you may not add
another; but you may replace the old one, on explicit permission
from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by
this License give permission to use their names for publicity for
or to assert or imply endorsement of any Modified Version.

Combining Documents

You may combine the Document with other documents released
under this License, under the terms defined in section 4 above

for modified versions, provided that you include in the combina-
tion all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your com-
bined work in its license notice.

The combined work need only contain one copy of this Li-
cense, and multiple identical Invariant Sections may be replaced
with a single copy. If there are multiple Invariant Sections with
the same name but different contents, make the title of each
such section unique by adding at the end of it, in parentheses,
the name of the original author or publisher of that section if
known, or else a unique number. Make the same adjustment to
the section titles in the list of Invariant Sections in the license
notice of the combined work.

In the combination, you must combine any sections entitled
“History” in the various original documents, forming one sec-
tion entitled “History”; likewise combine any sections entitled
“Acknowledgements”, and any sections entitled “Dedications”.
You must delete all sections entitled “Endorsements.”

Collections of Documents

You may make a collection consisting of the Document and other
documents released under this License, and replace the individ-
ual copies of this License in the various documents with a single
copy that is included in the collection, provided that you fol-
low the rules of this License for verbatim copying of each of the
documents in all other respects.

You may extract a single document from such a collection,
and distribute it individually under this License, provided you
insert a copy of this License into the extracted document, and
follow this License in all other respects regarding verbatim copy-
ing of that document.

Aggregation With Independent Works

A compilation of the Document or its derivatives with other
separate and independent documents or works, in or on a volume
of a storage or distribution medium, does not as a whole count
as a Modified Version of the Document, provided no compilation
copyright is claimed for the compilation. Such a compilation is
called an “aggregate”, and this License does not apply to the
other self-contained works thus compiled with the Document, on
account of their being thus compiled, if they are not themselves
derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to
these copies of the Document, then if the Document is less
than one quarter of the entire aggregate, the Document’s Cover
Texts may be placed on covers that surround only the Doc-
ument within the aggregate. Otherwise they must appear on
covers around the whole aggregate.

Translation

Translation is considered a kind of modification, so you may
distribute translations of the Document under the terms of sec-
tion 4. Replacing Invariant Sections with translations requires
special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addi-
tion to the original versions of these Invariant Sections. You
may include a translation of this License provided that you also
include the original English version of this License. In case of a
disagreement between the translation and the original English
version of this License, the original English version will prevail.

39

Termination

You may not copy, modify, sublicense, or distribute the Docu-
ment except as expressly provided for under this License. Any
other attempt to copy, modify, sublicense or distribute the Doc-
ument is void, and will automatically terminate your rights un-
der this License. However, parties who have received copies, or
rights, from you under this License will not have their licenses
terminated so long as such parties remain in full compliance.

Future Revisions of This License

The Free Software Foundation may publish new, revised versions
of the GNU Free Documentation License from time to time.
Such new versions will be similar in spirit to the present version,
but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version
number. If the Document specifies that a particular numbered
version of this License “or any later version” applies to it, you
have the option of following the terms and conditions either
of that specified version or of any later version that has been
published (not as a draft) by the Free Software Foundation. If
the Document does not specify a version number of this License,
you may choose any version ever published (not as a draft) by
the Free Software Foundation.

ADDENDUM: How to use this License for
your documents

To use this License in a document you have written, include
a copy of the License in the document and put the following
copyright and license notices just after the title page:

Copyright (C) YEAR YOUR NAME. Permission is
granted to copy, distribute and/or modify this
document under the terms of the GNU Free
Documentation License, Version 1.1 or any later
version published by the Free Software Foundation;
with the Invariant Sections being LIST THEIR
TITLES, with the Front-Cover Texts being LIST, and
with the Back-Cover Texts being LIST. A copy of
the license is included in the section entitled
¢‘GNU Free Documentation License’’.

If you have no Invariant Sections, write “with no Invariant
Sections” instead of saying which ones are invariant. If you have
no Front-Cover Texts, write “no Front-Cover Texts” instead of
“Front-Cover Texts being LIST”; likewise for Back-Cover Texts.

If your document contains nontrivial examples of program
code, we recommend releasing these examples in parallel under
your choice of free software license, such as the GNU General
Public License, to permit their use in free software.

arity, 31

array, 31
Array’Create, 26
Array’CreateFromList, 26
Array’Get, 26
Array’Set, 26
Array’Size, 26
Array’Tolist, 27
Assert, 20

atoms, 31

Backquoting, 9
BinSplitData, 15
BinSplitFinal, 15
BinSplitNum, 15
BitAnd, 23

BitOr, 23

BitXor, 23

Bodied, 5
BracketRational, 17
Builtin’Precision’Get, 19
Builtin’Precision’Set, 18

CachedConstant, 13
CAS, 31

Check, 20
ClearError, 21
ClearErrors, 21
constants, 31
ContFracEval, 17
ContFracList, 17
CurrentFile, 21
CurrentLine, 21

DefMacroRuleBase, 10
DefMacroRuleBaseListed, 10
DumpErrors, 21

Equals, 23
equations, 31
ExtraInfo’Get, 10
ExtraInfo’Set, 10

Fast..., 24
FastArcSin, 24
FastLog, 24
FastPower, 24
FindFunction, 11

40

functions, 31

GarbageCollect, 11
GenericTypeName, 26
GetCoreError, 20
GetError, 21
GetErrorTableau, 21
GetTime, 25
glossary, 31
GreaterThan, 23
GuessRational, 17

HoldArg, 8
HoldArgNr, 8

Infix, 5
InNumericMode, 16
IntLog, 16
IntNthRoot, 16
IntPowerNum, 14
IsBodied, 6
IsError, 21
IsGeneric, 26
IsInfix, 6
IsPostfix, 6
IsPrefix, 6
IsPromptShown, 24

KnownFailure, 29

LeftPrecedence, 7
LessThan, 23
licence, 34
license, 34

lists, 32
LogicTest, 28
LogicVerify, 28

MacroClear, 9
MacroLocal, 9
MacroRule, 9
MacroRuleBase, 9
MacroRuleBaseListed, 9
MacroSet, 9
Math..., 24
MathAbs, 24
MathAdd, 24
MathAnd, 23
MathArcCos, 24
MathArcCosh, 24
MathArcSin, 24
MathArcSinh, 24
MathArcTan, 24
MathArcTanh, 24
MathCeil, 24
MathCos, 24

MathCosh, 24 Verify, 28
MathDiv, 24 VerifyArithmetic, 29
MathDivide, 24 VerifyDiv, 29
MathExp, 24

MathFloor, 24 warranty, 33
MathGed, 24

MathGetExactBits, 15

MathLog, 24

MathMod, 24

MathMultiply, 24

MathNot, 23

MathOr, 23

MathPower, 24

MathSetExactBits, 15

MathSin, 24

MathSinh, 24

MathSqrt, 24

MathSubtract, 24

MathTan, 24

MathTanh, 24

matrices, 32

MultiplyNum, 13

NearRational, 17
NewtonNum, 14
NonN, 16
NthRoot, 17

object properties, 10
operators, 32
OpLeftPrecedence, 6
OpPrecedence, 6
OpRightPrecedence, 6

plotting, 32
Postfix, 5
precedence, 32
Prefix, 5
Prog, 5
properties, 32

RandVerifyArithmetic, 29
Retract, 8
RightAssociative, 6
RightPrecedence, 7

RoundTo, 29
Rule, 8
RuleBase, 7

RuleBaseArgList, 9
RuleBaselisted, 7
rules, 32

Secure, 12
ShiftLeft, 24
ShiftRight, 24
strings, 32
SumTaylorNum, 14
syntax, 32

TestYacas, 28
TrapError, 20
TruncRadian, 18

UnFence, 8

variables, 33

41

